
Turbo Treck TCP/IP

User’s Manual v3.0a

Turbo Treck Real-Time TCP/IP Users Manual

Contents
Introduction to TCP/IP .. 1.1
Short Background of the Internet ... 1.3

What is a Protocol? .. 1.4
The TCP/IP Protocol Stack ... 1.5
The Ethernet Protocol ... 1.7
Twisted Pair Ethernet .. 1.10
Collision Detect and Recovery ... 1.12
Ethernet Capacity ... 1.12
Ethernet Hardware Addressing ... 1.13
Special Bits of an Ethernet Address ... 1.15
Obtaining an Ethernet Address Block .. 1.15
Ethernet Frame Format .. 1.16

The Address Resolution Protocol (ARP) ...1.17
ARP Implementation ... 1.18
ARP Encapsulation and Identification .. 1.19
ARP Protocol Format .. 1.20

Big Endian/Little Endian ...1.22
The Point to Point Protocol (PPP) ...1.24

Link Control Protocol .. 1.25
PPP Encapsulation .. 1.25

The Protocol Field ... 1.26
The Information Field .. 1.26
The Padding Field ... 1.26

PPP Link Operation ... 1.27
Understanding IP Addresses ..1.28

IP Address Format .. 1.28
Network and Broadcast Addresses .. 1.29
Limited Broadcast ... 1.30
Drawbacks in Internet Addressing ... 1.30
Dotted Decimal Notation .. 1.31
Loopback Address .. 1.31
Special Address Conventions .. 1.32
Netmasks .. 1.34
Reserved Addresses ... 1.35
Sub-Netting & Super-Netting ... 1.36

The Internet Protocol (IP) ...1.37
Connectionless Packet Delivery Service ... 1.37
Purpose of the Internet Protocol ... 1.38
The Internet Datagram .. 1.38
Datagram Format ... 1.39

Turbo Treck Real-Time TCP/IP User’s Manual

Datagram Type of Service and Datagram Precedence 1.40
Datagram Encapsulation ... 1.40

Understanding Checksums ...1.41
Introduction .. 1.41
Explanation of Checksums .. 1.42

The Internet Control Message Protocol (ICMP) ...1.44
The Internet Control Message Protocol ... 1.44
Error Reporting vs. Error Correction ... 1.45
ICMP Message Delivery ... 1.46
ICMP Message Format ... 1.47
Testing Destination Reachability and Status (Ping) 1.48
Summary ... 1.49

The User Datagram Protocol (UDP) ..1.49
UDP Message Format ... 1.50
UDP Pseudo-Header ... 1.51
UDP Encapsulation ... 1.51

The Transport Control Protocol (TCP) ...1.52
Reliable Stream Delivery ... 1.52
Reliability .. 1.53
Sliding Windows ... 1.54
Transmission Control Protocol ... 1.57
TCP Header ... 1.57

TCP/IP and Client/Server Relationships ..1.59
Summary ... 1.60

Introduction to BSD Sockets .. 2.1
Intro to BSD Sockets ... 2.3
Overview of How Sockets Works .. 2.3
Byte-Ordering Functions .. 2.4
Data Structures ... 2.5
Common Sockets Calls ... 2.6

socket ... 2.6
bind ... 2.6
listen ... 2.6
accept ... 2.6
connect ... 2.7
send .. 2.7
sendto ... 2.7
recv ... 2.7
recvfrom .. 2.7
close ... 2.7

Example Code ... 2.8
UDP Client .. 2.8
UDP Server ... 2.10

TCP Client ...2.12

Turbo Treck Real-Time TCP/IP Users Manual

TCP Server ..2.14
Turbo Treck Systems .. 3.1
Turbo Treck Real-Time TCP/IP Systems ... 3.3

Locking System .. 3.3
Buffer System ... 3.7
Timer System .. 3.8

Integrating Turbo Treck Real-Time
Protocols Into Your Environment .. 4.1

Integrating Turbo Treck Real-Time
Protocols Into Your Environment ... 4.3

Step 1- Determining How to Use the Protocols in Your System 4.4
Do you want to have Turbo Treck run as its own task or in the context of
other tasks as a shared library? ... 4.4

Step 2 - Setting TRSYSTEM.H for Various Compile Time Switches 4.6
Performance Macros ... 4.6

TM_BYPASS_ETHER_LL .. 4.6
TM_IP_FRAGMENT .. 4.6
TM_IP_FRAGMENT_NO_COPY ... 4.6
TM_DISABLE_PMTU_DISC ... 4.6
TM_DISABLE_TCP_SACK ... 4.6
TM_USE_TCP_PACKET ... 4.6
TM_DISABLE_DYNAMIC_MEMORY .. 4.7
TM_ARP_UPDATE_ON_RECV ... 4.7
TM_OPTIMIZE_SPEED ... 4.7
TM_OPTIMIZE_SIZE... 4.7
TM_ERROR_CHECKING ... 4.7
TM_THREAD_STOP ... 4.7
TM_PROTO_EXTERN ... 4.8
TM_LOOP_TO_DRIVER .. 4.8
TM_USE_DRV_ONE_SCAT_SEND ... 4.8
TM_USE_DRV_SCAT_RECV ... 4.8
TM_INDRV_INLINE_SEND_RECV .. 4.8
TM_DISABLE_TCP_ACK_PUSH .. 4.8
TM_SINGLE_INTERFACE_HOME .. 4.8
TM_MULTIPLE_CONTEXT ... 4.9
TM_DISABLE_ANSI_LINE_FILE .. 4.9
TM_DISABLE_TCP_RFC2414 ... 4.9
TM_PC_LINT ... 4.9
TM_TCP_ANVL ... 4.9
TM_USE_AUTO_IP ... 4.9
TM_USE_RAW_SOCKET .. 4.9
TM_USE_REUSEADDR_LIST ... 4.9
TM_PPP_LQM ... 4.9

Models for Running Turbo Treck ... 4.10

Turbo Treck Real-Time TCP/IP User’s Manual

TM_TRECK_NO_KERNEL .. 4.10
TM_TRECK_NONPREEMPTIVE_KERNEL ... 4.10
TM_TRECK_TASK .. 4.10
TM_TRECK_PREEMPTIVE_KERNEL ... 4.10
TM_TASK_RECV ... 4.10
TM_TASK_XMIT .. 4.11
TM_TASK_SEND... 4.11

Timer Updates .. 4.11
TM_TICK_LENGTH ... 4.11

Word Order ... 4.12
TM_LITTLE_ENDIAN ... 4.12
TM_BIG_ENDIAN .. 4.12

Memory Allocation ... 4.12
TM_USE_SHEAP ... 4.12
TM_SHEAP_SIZE .. 4.12
TM_DYNAMIC_CREATE_SHEAP .. 4.12

Intel Far Data and Code .. 4.13
TM_FAR ... 4.13
TM_CODE_FAR ... 4.13

Data Alignment ... 4.13
TM_ETHER_HW_ALIGN .. 4.13

Predefined Processor Macros ... 4.13
TM_INTEL_X86 ... 4.13
TM_MOTOROLA_CPU32 .. 4.13
TM_MOTOROLA_68K .. 4.13
TM_MOTOROLA_PPC .. 4.13
TM_TMS320_C3 .. 4.13
TM_TMS320_C6 .. 4.13

Compiler Specification .. 4.13
TM_COMPILER_SDS... 4.14
TM_COMPILER_DDI_PPC .. 4.14
TM_COMPILER_MRI_68K .. 4.14

RTOS/Kernel Environments .. 4.14
TM_KERNEL_ELX_86 ... 4.14
TM_KERNEL_UCOS_X86 .. 4.14
TM_KERNEL_UCOS_PPC ... 4.14
TM_KERNEL_UCOS_CPU32 ... 4.14
TM_KERNEL_AMX_CPU32 .. 4.14
TM_KERNEL_AMX_X86 .. 4.14
TM_KERNEL_DOS_X86 .. 4.14

Step 3 - Creating the Build Command (.BAT) ...4.15
Tier 1: Setting up the compiler and library utility primitives 4.15
Tier 2: Compile/Library all the Turbo Treck code 4.16
Tier 3: Setting up the Automated Build System .. 4.17

Step 4 - Creating an RTOS/Kernel Interface ...4.18

Turbo Treck Real-Time TCP/IP Users Manual

Initialization .. 4.19
Memory Allocation and Free .. 4.20
Turbo Treck Simple Heap ... 4.20

TM_USE_SHEAP ... 4.20
TM_SHEAP_SIZE .. 4.20
TM_DYNAMIC_CREATE_SHEAP .. 4.21
tfKernelSheapCreate ... 4.21

Critical Section Handling .. 4.21
Error Logging .. 4.22
Warning Information Logging .. 4.22
Task Suspend and Resume ... 4.23
ISR Interface ... 4.26
Device Interface Routines .. 4.27
tfKernelCreateEvent ... 4.28
tfKernelPendEvent .. 4.28
tfKernelIsrPostEvent .. 4.29
tfKernelTaskPostEvent ... 4.29
tfKernelTaskYield .. 4.30

Step 5 - Hooking in the Timer ...4.31
Method 1: A Timer Task to Update and Execute Timers 4.31
Method 2: A Timer ISR to Update Timers and Execute from Either a Main
Line Loop or a Task. ... 4.33

Step 6- Key Things to Start Using Turbo Treck ..4.34
Step 7 - Testing the New Library with a Loopback Test4.35
Step 8 - Using Ethernet or PPP ...4.39
Step 9 - Adding a New Device Driver ...4.40

Device Driver Functions that You May Need to Provide 4.55
Further Device Driver Modifications to allow a device driver to be shared by
several Ethernet Interfaces ... 4.67

Summary of Device Driver API’s that are provided to allow a device driver
to be shared by several Ethernet interfaces .. 4.67
Device driver open function .. 4.67
Device driver close function ... 4.67
Any device driver function ... 4.67
Device driver ISR Handler ... 4.68

Adding and Configuring your New Device Driver 4.69
Single Send Call Send per Frame, Out of Order Send 4.72

Description .. 4.72
Single call to the driver send per scattered frame4.72
Out of Order Frame Transmission ...4.72

TM_USE_DRV_ONE_SCAT_SEND ... 4.72
Modified driverSend ... 4.72
tfUseInterfaceOneScatSend .. 4.74

Example ... 4.75
Modified driverSend function to support per-frame single call scattered

Turbo Treck Real-Time TCP/IP User’s Manual

send: .. 4.75
User calls ... 4.75
tfSendCompletePacketInterface .. 4.76
Limitations ... 4.76

Device Driver Scattered recv (“Gather Read”) .. 4.77
Description .. 4.77
TM_USE_DRV_SCAT_RECV ... 4.77
Modified driver recv routine ... 4.77
tfUseInterfaceScatRecv .. 4.79
tfRecvScatInterface ... 4.79
Scattered recv contiguous length threshold used in tfRecvScatInterface
4.80
Dealing with non contiguous network protocol headers in scattered recv
buffers, TM_RECV_SCAT_MIN_INCR_BUF 4.80
Example ... 4.81

No copy loop back driver ... 4.82
Step 10 - Testing Your New Device Driver ..4.83

Programmer’s Reference .. 5.1
BSD 4.4 Socket API .. 5.5

accept ... 5.5
bind ... 5.7
connect ... 5.8
getpeername ... 5.11
getsockname ... 5.12
getsockopt .. 5.13
htonl ... 5.24
htons ... 5.25
inet_addr ... 5.26
inet_aton ... 5.27
inet_ntoa ... 5.28
listen ... 5.29
ntohl ... 5.30
ntohs ... 5.31
readv ... 5.32
recv ... 5.34
recvfrom .. 5.37
rresvport ... 5.40
select ... 5.41
send .. 5.43
sendto ... 5.46
setsockopt .. 5.48
shutdown .. 5.59
socket ... 5.60
tfClose .. 5.62

Turbo Treck Real-Time TCP/IP Users Manual

tfIoctl .. 5.63
tfRead ... 5.65
tfWrite ... 5.67
writev .. 5.68

Socket Extension Calls ..5.70
tfBindNoCheck ... 5.70
tfBlockingState ... 5.72
tfFlushRecvQ .. 5.73
tfFreeDynamicMemory ... 5.74
tfFreeZeroCopyBuffer .. 5.75
tfGetOobDataOffset .. 5.76
tfGetSendCompltBytes ... 5.77
tfGetSocketError ... 5.78
tfGetWaitingBytes .. 5.79
tfGetZeroCopyBuffer .. 5.80
tfInetToAscii ... 5.81
tfIpScatteredSend ... 5.82
tfRawSocket .. 5.84
tfRecvFromTo ... 5.86
tfRegisterIpForwCB .. 5.88
tfResetConnection .. 5.89
tfSendToFrom ... 5.90
tfSendToInterface ... 5.92
tfSocketArrayWalk ... 5.94
tfSocketScatteredSendTo ... 5.95
tfZeroCopyRecv ... 5.98

MSG_SCATTERED ... 5.99
Example .. 5.100

tfZeroCopyRecvFrom .. 5.103
MSG_SCATTERED .. 5.104
Example .. 5.105

tfZeroCopySend .. 5.107
tfZeroCopySendTo .. 5.109

Call Back Function Registration .. 5.111
tfRegisterSocketCB .. 5.111
tfRegisterSocketCBParam .. 5.115

Turbo Treck Initialization Functions .. 5.117
tfInitTreckOptions ... 5.117
tfSetTreckOptions ... 5.121
tfStartTreck .. 5.124

Device/Interface API ... 5.125
tfAddInterface ... 5.125
tfAddInterfaceMhomeAddress ... 5.128
tfCheckReceiveInterface .. 5.130
tfCheckSentInterface ... 5.131

Turbo Treck Real-Time TCP/IP User’s Manual

tfCheckXmitInterface ... 5.132
tfCloseInterface ... 5.133
tfConfigInterface .. 5.134
tfDeviceClearPointer .. 5.138
tfDeviceGetPointer ... 5.139
tfDeviceStorePointer .. 5.140
tfFinishOpenInterface .. 5.141
tfFreeDriverBuffer .. 5.142
tfGetDriverBuffer ... 5.143
tfGetBroadcastAddress ... 5.144
tfGetIfMtu .. 5.145
tfGetIpAddress .. 5.146
tfGetNetMask .. 5.147
tfInterfaceGetVirtualChannel .. 5.148
tfInterfaceSetOptions .. 5.149
tfInterfaceSetVirtualChannel .. 5.152
tfInterfaceSpinLock ... 5.153
tfIoctlInterface ... 5.154
tfNotifyInterfaceIsr .. 5.156
tfNotifyInterfaceTask ... 5.158
tfNotifyReceiveInterfaceIsr ... 5.159
tfNotifySentInterfaceIsr ... 5.159
tfOpenInterface .. 5.159
tfPoolCreate ... 5.164
tfPoolDelete ... 5.166
tfPoolIsrGetBuffer .. 5.167
tfPoolReceive ... 5.168
tfRecvInterface .. 5.169
tfRecvScatInterface ... 5.170
tfSendCompleteInterface ... 5.171
tfSendCompletePacketInterface ... 5.172
tfSetIfMtu .. 5.173
tfUnConfigInterface ... 5.175
tfUseInterfaceOneScatSend .. 5.176
tfUseInterfaceScatRecv ... 5.178
tfUseInterfaceXmitQueue .. 5.181
tfUseIntfDriver ... 5.183
tfUseScatIntfDriver .. 5.185
tfWaitReceiveInterface .. 5.187
tfWaitSentInterface .. 5.188
tfWaitXmitInterface ... 5.189
tfXmitInterface ... 5.190

Ethernet Link Layer API .. 5.191
tfGetEthernetBuffer .. 5.191
tfUseEthernet ... 5.192

Turbo Treck Real-Time TCP/IP Users Manual

Null Link Layer API ... 5.193
tfUseNullLinkLayer .. 5.193

SLIP Link Layer API .. 5.194
tfGetSlipPeerIpAddress ... 5.194
tfSetSlipPeerIpAddress ... 5.195
tfSlipSetOptions .. 5.196
tfUseSlip .. 5.198

ARP/Routing Table API .. 5.199
tfAddArpEntry .. 5.199
tfAddDefaultGateway .. 5.200
tfAddMcastRoute ... 5.201
tfAddProxyArpEntry ... 5.203
tfAddStaticRoute ... 5.204
tfDelArpEntryByIpAddr .. 5.205
tfDelArpEntryByPhysAddr ... 5.206
tfDelDefaultGateway .. 5.207
tfDelProxyArpEntry ... 5.208
tfDelStaticRoute .. 5.209
tfDisablePathMtuDisc ... 5.210
tfGetArpEntryByIpAddr .. 5.211
tfGetArpEntryByPhysAddr ... 5.212
tfGetDefaultGateway .. 5.213
tfRtDestExists .. 5.214
tfRegisterIpForwCB ... 5.215
tfUseRip ... 5.216

Timer Interface API .. 5.217
tfTimerExecute ... 5.217
tfTimerUpdate .. 5.218
tfTimerUpdateIsr .. 5.219

Kernel/RTOS Interface .. 5.220
tfKernelCreateCountSem ... 5.220
 tfKernelCreateEvent .. 5.221
tfKernelDeleteCountSem ... 5.222
tfKernelError .. 5.223
tfKernelFree ... 5.224
tfKernelInitialize ... 5.225
tfKernelInstalIsrHandler .. 5.226
tfKernelIsrPostEvent ... 5.227
tfKernelMalloc ... 5.228
tfKernelPendCountSem ... 5.229
tfKernelPendEvent ... 5.230
tfKernelPostCountSem .. 5.231
tfKernelReleaseCritical ... 5.232
tfKernelSetCritical .. 5.233
tfKernelSheapCreate .. 5.234

Turbo Treck Real-Time TCP/IP User’s Manual

tfKernelTaskPostEvent .. 5.235
tfKernelTaskYield ... 5.236
tfKernelWarning .. 5.237

Compiler Library Replacement Functions ... 5.238
tfMemCpy .. 5.238
tfMemSet ... 5.239
tfQSort ... 5.240
tfSPrintF ... 5.241
tfSScanF .. 5.243
tfStrCat ... 5.245
tfStrChr .. 5.246
tfStrCmp ... 5.247
tfStrCpy ... 5.248
tfStrCSpn ... 5.249
tfStrError .. 5.250
tfStrLen .. 5.251
tfStrNCmp .. 5.252
tfStrRChr .. 5.253
tfStrStr ... 5.254
tfStrToL .. 5.255
tfStrToUl .. 5.256
tfVSPrintF .. 5.257
tfVSScanF .. 5.259

Application Reference .. 6.1
PING Application Program Interface .. 6.4

Description ... 6.4
tfPingClose ... 6.5
tfPingGetStatistics .. 6.6
tfPingOpenStart .. 6.8

DNS Resolver ..6.10
Description ... 6.10
Initialization functions .. 6.10
User Interface ... 6.10
Non-Blocking Mode ... 6.11
Mail Exchanger (MX) Records .. 6.11
tfDnsInit ... 6.13
tfDnsGetHostAddr ... 6.14
tfDnsGetHostByName .. 6.15
tfDnsGetMailHost .. 6.16
tfDnsGetNextMailHost ... 6.17
tfDnsSetOption ... 6.18
tfDnsSetServer .. 6.19

FTPD Application Program Interface ...6.20
Description ... 6.20

Turbo Treck Real-Time TCP/IP Users Manual

User Interface ... 6.20
File System Interface from the FTP server .. 6.21
tfFtpdUserExecute .. 6.23
tfFtpdUserStart ... 6.24
tfFtpdUserStop ... 6.27

FTP Client Application Program Interface ...6.28
User Interface ... 6.28
File System Interface ... 6.30
tfFtpAbor .. 6.33
tfFtpAppe ... 6.34
tfFtpCdup ... 6.36
tfFtpClose ... 6.37
tfFtpConnect ... 6.38
tfFtpCwd ... 6.39
tfFtpDele ... 6.40
tfFtpDirList ... 6.41
tfFtpFreeSession ... 6.43
tfFtpGetReplyText ... 6.44
tfFtpHelp ... 6.45
tfFtpLogin ... 6.47
tfFtpMkd ... 6.48
tfFtpNewSession .. 6.49
tfFtpNoop ... 6.50
tfFtpPort ... 6.51
tfFtpPwd ... 6.52
tfFtpQuit ... 6.53
tfFtpRein ... 6.54
tfFtpRename ... 6.55
tfFtpRetr ... 6.57
tfFtpRmd ... 6.59
tfFtpStor ... 6.60
tfFtpSyst ... 6.62
tfFtpTurnPasv .. 6.63
tfFtpType .. 6.64
tfFtpUserExecute .. 6.65

FTP Passive Mode ..6.66
Description ... 6.66

Example ... 6.67
TFTP Client Application Program Interface ...6.70

User Interface ... 6.70
tfTftpGet ... 6.71
tfTftpInit ... 6.73
tfTftpPut ... 6.74
tfTftpSetTimeout .. 6.76
tfTftpUserExecute ... 6.77

Turbo Treck Real-Time TCP/IP User’s Manual

TFTPD Application Program Interface ...6.78
Description ... 6.78
User Interface ... 6.78
File System Interface ... 6.79
tfTftpdInit ... 6.79
tfTftpdUserExecute ... 6.80
 tfTftpdUserStart ... 6.81
tfTftpdUserStop ... 6.83

File system interface ...6.84
Entry points from the FTP server to the file system: 6.84
Entry points from the FTP client to the file system: 6.85
Entry points from the TFTP server to the file system: 6.85
tfFSChangeDir .. 6.86
tfFSChangeParentDir .. 6.87
tfFSCloseDir ... 6.88
tfFSCloseFile ... 6.89
tfFSDeleteFile ... 6.90
tfFSGetNextDirEntry ... 6.91
tfFSGetUniqueFileName ... 6.92
tfFSGetWorkingDir ... 6.93
tfFSMakeDir ... 6.94
tfFSOpenDir .. 6.95
tfFSOpenFile ... 6.96
tfFSReadFile ... 6.97
tfFSReadFileRecord .. 6.98
tfFSRemoveDir .. 6.99
tfFSRenameFile .. 6.100
tfFSStructureMount .. 6.101
tfFSSystem ... 6.102
tfFSUserAllowed ... 6.103
tfFSUserLogin ... 6.104
tfFSUserLogout ... 6.105
tfFSWriteFile .. 6.106
tfFSWriteFileRecord .. 6.107

Telnet Daemon .. 6.108
User to Telnet server interface ... 6.108
Telnet server to user interface ...6.109
tfTeldClosed .. 6.110
tfTeldIncoming ... 6.111
tfTeldOpened ... 6.112
tfTeldSendQueueBytes .. 6.113
tfTeldSendQueueSize ... 6.114
tfTeldUserClose ... 6.115
tfTeldUserExecute .. 6.116
tfTeldUserSend .. 6.117

Turbo Treck Real-Time TCP/IP Users Manual

 tfTeldUserStart .. 6.119
tfTeldUserStop ...6.121

Turbo Treck Test Suite .. 6.122
Description .. 6.122
Blocking Mode .. 6.124
Data validation ...6.125
Random testing mode .. 6.125
Locking test ... 6.126
tfTestTreck ...6.126

Optional Protocols ... 7.1
AUTO IP Configuration ... 7.3

Description ... 7.3
Enabling AUTO IP .. 7.4
Example ... 7.4
tfAutoIPPickIpAddress .. 7.7
tfCancelCollisionDetection ... 7.8
tfConfigAutoIp ... 7.9
tfUseCollisionDetection ... 7.10

userCbFunc call back function .. 7.12
tfUserStartArpSend .. 7.13

Interface configuration .. 7.14
BOOTP Automatic Configuration API ..7.16

Description ... 7.16
tfConfGetBootEntry .. 7.18
tfUseBootp ... 7.19
tfStartBootRelayAgent ... 7.21
tfStopBootRelayAgent ... 7.23

DHCP Automatic Configuration API ...7.24
Description ... 7.24
tfConfGetBootEntry .. 7.26
tfUseDhcp .. 7.27

DHCP User Controlled Configuration API ...7.29
Description ... 7.29
tfDhcpUserGetBootEntry ... 7.32
tfDhcpUserRelease ... 7.33
tfDhcpUserStart .. 7.34

Dialer ...7.36
tfDialerAddExpectSend .. 7.38
tfDialerAddSendExpect .. 7.39
tfUseDialer .. 7.41

IGMP API ...7.43
Introduction .. 7.43
Description ... 7.43
Enabling the IGMP Code .. 7.43

Turbo Treck Real-Time TCP/IP User’s Manual

Sending Multicast Packets ... 7.43
Send API ... 7.43
IP Outgoing Interface for Multicast Packets ... 7.44
IP TTL for Multicast Packets .. 7.44
Mapping Multicast Addresses to Layer 2 Hardware Addresses 7.44

IGMP Protocol .. 7.44
Receiving UDP Multicast Packets ... 7.44
Joining a Host Group .. 7.44
Leaving a Host Group ... 7.45
Turbo Treck Stack Initialization of the IGMP Protocol 7.45
Limitations ... 7.45

drvIoctlFunc ... 7.46
tfSetMcastInterface .. 7.48

NAT ..7.49
One IP address .. 7.49
Multiple IP addresses ... 7.50
Mixing ... 7.51
Ping ... 7.51
TraceRoute ... 7.51
FTP Servers .. 7.51
Private IP Addressing ... 7.51
Triggers .. 7.52
Public vs Private ... 7.52
Reference Implementation .. 7.52
tfNatConfig ... 7.53
tfNatUnConfig .. 7.54
tfNatConfigNapt ... 7.55
tfNatConfigInnerTcpServer .. 7.56
tfNatConfigInnerUdpServer ... 7.57
tfNatConfigInnerFtpServer ... 7.58
tfNatConfigStatic .. 7.60
tfNatConfigDynamic ... 7.61
tfNatConfigMaxEntries ... 7.62
tfNatDump .. 7.63

PPP Interface ...7.64
Introduction to PPP .. 7.64
PPP Negotiation .. 7.64
PPP and Authentication .. 7.66
tfChapRegisterAuthenticate ... 7.68
tfGetPppDnsIpAddress .. 7.69
tfGetPppPeerIpAddress .. 7.70
tfPapRegisterAuthenticate ... 7.71
tfPppSetOption ... 7.72
tfSetPppPeerIpAddress .. 7.82

Turbo Treck Real-Time TCP/IP Users Manual

tfUseAsyncPpp .. 7.83
tfUseAsyncServerPpp .. 7.85

Link Quality Monitoring (LQM) ...7.87
Description ... 7.87
Code Example .. 7.88
Limitations .. 7.92
Public API ... 7.93
tfUsePppLqm .. 7.93
tfFreePppLqm ... 7.94
tfLqmRegisterMonitor .. 7.95
tfLqmSendLinkQualityReport ... 7.99
tfPppSendEchoRequest ... 7.100
tfLqmSetLqrTimerPeriod .. 7.102
tfLqmGetLocalLqrTimerPeriod ... 7.103
tfLqmGetPeerLqrTimerPeriod ... 7.104

Appendix A: Configuration Notes ... A.1
Counting Semaphores in the Turbo Treck Stack A.4
Description .. A.4
tfKernelGetCurrentTaskId .. A.5
tfKernelTaskPendEvent ... A.6
tfKernelTaskPostEvent .. A.7
tfKernelTaskPendEvent ... A.9
tfKernelTaskPostEvent .. A.10

Running multiple instances of Turbo Treck .. A.11
Context insensitive functions .. A.11
Initialization Sequence ... A.12
Summary of new context API’s .. A.12
Enabling the Multiple Instances code in Turbo Treck A.13

No Kernel ... A.13
Non preemptive kernel ... A.14
Preemptive Kernel .. A.14

Device Driver Modifications .. A.15
Device driver ISR ... A.15
tfInitTreckMultipleContext .. A.16
tfCreateTreckContext ... A.17
tfSetCurrentContext ... A.18
tfGetCurrentContext ... A.19

Appendix B: RTOS Notes ... B.1
RTOS Application Note for uC/OS .. B.3

Predefined Settings in TRSYSTEM.H ... B.3
Initialization .. B.3
Critical Section Handling .. B.4
Error Logging and Warning Information LoggingB.4
Task Suspend and Resume ... B.4

Turbo Treck Real-Time TCP/IP User’s Manual

ISR Interface ... B.5
Hooking up the Timer ... B.5
Task Usage ...B.5

RTOS Application Note for AMX-86 .. B.6
Initialization .. B.6
Memory Allocation and Free .. B.6
Critical Section Handling .. B.6
Error Logging and Warning Information LoggingB.6
Task Suspend and Resume ...B.6
ISR Interface ... B.7
Hooking up the Timer ... B.7
Task Usage ...B.7
AMX-86 System Configuration Module ... B.7

Appendix C: Debugging ... C.1
Debugging a Device Driver .. C.3

How to debug a device driver ... C.3
Running Out of Memory ... C.7
Corrupted Memory ...C.8
Receiving Corrupted Data ..C.8
Kernel Error: Send Too Much Scattered Data ... C.8
Kernel Error: Attempt to free more than alloc a bufferC.9
Ping and UDP work but TCP does not ..C.9
Ping works but UDP and TCP do not ... C.9
Driver Will Not Send and/or Receive Data ..C.9
Driver stops sending and/or receiving data ... C.10
Other problems ... C.10

Introduction to TCP/IP

1.1

Introduction to TCP/IP

Turbo Treck Real-Time TCP/IP User’s Manual

1.2

Introduction to TCP/IP

1.3

Short Background of the Internet
The TCP/IP protocol suite is also known as the “Internet” Protocol Suite since it is
used to move data across the Internet. The Internet is a worldwide network of
computers located at many different companies, institutions, and government
offices. The Internet was started over three decades ago. Realizing the need for a
common method to share data and send messages in electronic form, the US
Department of Defense (DOD) started the Internet project within the Defense
Advanced Research Projects Agency. The first Internet was called ARPANET
and started operation in 1968. As more and more researchers joined ARPANET,
people started to realize the need for a global network. In 1979, a group called the
Internet Control and Configuration Board (ICCB) was founded by ARPA and met
to coordinate and structure the architecture of the now growing ARPANET. In
1980, the ARPANET was extended to a global network when the computers that
needed network connectivity were outfitted with the TCP/IP protocol suite. In
1983, the MILNET was created to allow military sites to have a separate network
from the researchers. Both of these networks (ARPANET for researchers and
MILNET for the Military) used TCP/IP for network communication. Now that the
military was on its own network, ARPA decided to encourage universities to use
the new TCP/IP protocols and utilize the new ARPANET. At most universities at
that time, the computer science departments were using the UNIX operating system.
ARPA then funded a project to adapt the TCP/IP protocol suite to the BSD (Berkeley
Software Distribution) UNIX operating system and provided a low cost means to
allow the universities to connect to the ARPANET. The BSD variant of UNIX
also had many new tools for the TCP/IP Protocol Suite that was integrated with it.
These tools allowed the user to use simple UNIX commands to move files across
the network with ease. It was so simple to use that it became popular very quickly.
The BSD UNIX also included a new application program interface (API) to allow
programmers to access the TCP/IP protocols. This new API was called sockets
and allowed the user a uniform way to program network applications without regard
to the type of computer that it was running on. This allowed researchers to write
new programs and protocols to run on top of the TCP/IP protocol. Since BSD
UNIX was so popular within computer science departments, TCP/IP was also used
for local area networking. The ARPANET became so popular, that in 1986 the
National Science Foundation funded the first wide area backbone network called
NSFNET.

This new backbone network allowed even more educational institutions to connect
to what was now being called the Internet (although the term ARPANET was still
being used). Because the National Science Foundation funded NSFNET,
universities used it almost exclusively. As commercial sites needed local area
connectivity to share files within their company, most of them turned to the IPX/
SPX protocols developed by Novell. In fact at one time, Novell was being used by
more than 80% of commercial sites using local area networking. As the need for
Electronic Mail (e-mail) and wide area networking grew in the commercial sector,

Turbo Treck Real-Time TCP/IP User’s Manual

1.4

companies turned to the Internet and the TCP/IP protocols that it used. New
companies were formed to create new commercial backbone networks. One of the
first of these was UUNET. Over the past few years, the Internet has exploded
onto the commercial scene because of a new way of advertising called web pages.
Today, it is difficult to watch television without being bombarded with web page
addresses.

What is a Protocol?
The definition of a protocol is “A set of formal rules describing how to transmit
data, especially across a network.” What are these rules? Well these rules consist
of how the packet is formatted, how much data it carries, if and how it can be sure
that the remote computer has actually received the data, as well as any additional
information that the protocol needs to send to the remote side. In our software, we
utilize the TCP/IP (or Internet) protocol suite set of rules. These rules are outlined
in loose specifications called Request for Comments (RFC’s). An RFC is submitted
by anyone who thinks that some change or addition to the Internet protocol suite
needs to happen. This proposed RFC is sent to the appropriate working group at
the Internet Engineering Task Force (IETF) for comments by others who are
involved with that working group. If others in the working group agree with the
proposed idea, then they may ask for some changes and adopt the RFC as a
“Standards Track” document. If they reject the idea, then the RFC can still be
published as an “Informational” RFC. Standards Track documents describe what
the protocol should do in all implementations. Informational RFC’s describe what
a vendor would like others to implement. There are other types of RFC’s, but most
are beyond the scope of this document. You can visit the IETF web site at
http://www.ietf.org. If you are looking for a particular RFC, it is always easier to
locate the repository closest to you via a web search engine (such as Altavista,
Infoseek, and Yahoo).

Introduction to TCP/IP

1.5

The TCP/IP Protocol Stack
A “stack” architecture divides out the functionality of a data communications
capability into several separate layers. Each layer then communicates with its peer
layer on remote machine or on the same machine. Rather than tightly coupling the
hardware interface with addressing, the stack model identifies a separate interface
through which these functions shall cooperate. Figure 1-1 shows a sample of an
OSI architecture model. The lower levels of the stack consist of independent
protocols that support specific hardware interfaces, transport mechanisms, and so
forth while the higher layer protocols are interfaces into the user application code.

7 Application
6 Presentation
5 Session
4 Transmission
3 Network
2 Data Link
1 Physical

Fig. 1-1
The OSI Architecture Model

Figure 1-2 shows the TCP/IP model. We have mapped some of the protocols in use
with TCP/IP into the OSI reference model. Note that BSD Sockets is at the
session layer. BSD Sockets is not a protocol. It is a user API to allow us access to
the protocol stack beneath.

7 Application

RPC

Your Application and/or Treck Applications

Host / Network Byte Order Conversion

Ethernet

Your Network Hardware

IP

TCP

1 Physical

2 Data Link

3 Network

4 Transmission

5 Session

6 Presentation

UDP

ICMP ARP

PPP SLIP

Fig. 1-2
The TCP/IP Model

Turbo Treck Real-Time TCP/IP User’s Manual

1.6

The TCP/IP stack layers perform the following functions:

Media Access (Physical) Protocols Specify the mechanisms for client
and server nodes on a network to
interface to the transmission media.

Data-Link Protocols Specify the control characters and the
lowest level mechanisms for
transmitting packets of data in
successive small segments (called
frames) between nodes.

Network Protocols Means by which packets of data are
routed through the network from
sender to receiver. This level is more
concerned with the path the packets
take not the content of those packets.

Transport Protocols Assume responsibility for the
delivering of a potentially large
message from the sending
application on one network to the
receiving destination.

Session Protocols Responsible for negotiating
parameters for the link (i.e. which
layer 3 protocol to use).

Presentation Protocols Responsible for making sure that data
is viewed the same on both ends of
the communication. Can also be used
for encryption and compression.

Application Protocols Forms the working toolset for
network users and the applications
that are written to support them.

In the original TCP/IP stack, the network layer consisted of the Internet Protocol
(IP), and the transport layer consisted of the Transport Control Protocol (TCP) for
reliable delivery of application messages and User Datagram Protocol for (UDP)
for efficient exchange of small packets-primarily for control and administrative
purposes.

Introduction to TCP/IP

1.7

The Ethernet Protocol
From its inception in 1978 by the Xerox Corporation, Intel Corporation, and Digital
Equipment Corporation, Ethernet has become a very popular LAN technology. It
has grown to be one of the most widely used methods of packet switching between
computers.

The original configuration of Ethernet technology involved setting up a connection
between two computers using a coaxial cable. This cable was generally ½” diameter
and could be up to 500 meters long. (See figure 1-3.)

ø 1/2"
OUTER INSULATING JACKET

BRAIDED METAL SHIELD

POLYETHYLENE FILLER

CENTER WIRE

Fig. 1-3
Cross Section of a Coaxial Cable Used in the Original Ethernet

The cable itself was completely passive. It carried no electrical current. The only
active electrical components that made the network function were associated with
the computers attached to the network.

The connection between a computer and an Ethernet cable required a piece of
hardware called a transceiver. Looking at the physical cable, there needed to be a
hole in the outer layers for placement of the transceiver. This was commonly referred
to as a tap. Usually small metal pins mounted to the transceiver would go through
the hole in the cable to provide electrical contacts to the center wire and the braided
shield. Some manufactures made “T’s” that required the cable to be cut and inserted.

Besides the transceiver, there also needed to be a host interface or host adapter
that would plug into the computer’s bus. This enabled the connection to be made
from the computer to the network.

Turbo Treck Real-Time TCP/IP User’s Manual

1.8

The transceiver is a small piece of hardware that was placed adjacent to the ether.
It contains digital circuitry that allows it communicate with a digital computer. The
transceiver can sense if the ether is in use and can translate analog signals to and
from digital form. The cable that connects the transceiver and the host adapter is
called the Attachment Unit Interface (AUI). This cable contains many wires. These
wires carry electrical current needed to operate the transceiver, the signals that
control the transceiver operation, and the contents of the packet being sent or
received. (See fig. 1.4.)

TRANSCEIVER

AUI CABLE
HOST INTERFACE
ON ADAPTER BOARD

BUS IN A COMPUTER

ETHERNET

Fig. 1-4
Host to Ethernet Connection

Introduction to TCP/IP

1.9

The AUI cable connects the host interface and the transceiver. It carries power,
signals, and transmitting or receiving packets.

Because of several obvious reasons, like a big, hard to bend, bulky wire, and the
chance of electrical interference, engineers developed a new method of Ethernet
wiring. It is called thin wire Ethernet or thinnet. This cabling system proved to be
more flexible, thinner, and less expensive. However, because of using such a thin
wire, the cable provided less protection against electrical interference. It could not
be placed near powerful electrical equipment, like that found in a factory. It also
covers shorter distances and supports fewer computer connections per network
than thick Ethernet. On a thin-wire Ethernet network, the costly, bulky transceivers
were replaced with digital, high-speed circuits. That enabled direct connection
from a computer to the Ethernet. Now instead, the computer contains both the
circuitry and the host interface. This is beneficial to manufacturers of small
computers and workstations because they can integrate Ethernet hardware into
single board computers and mount connectors directly to the back of the computer.

This method is also beneficial if many computers occupy a single room. The thinnet
cable runs from one computer workstation directly to another. Another computer
can be added by simply connecting that computer to another on the thinnet chain.
The disadvantage to this is that it enables users to manipulate the ether. If it is
disconnected, all the computers in the chain are unable to communicate. However,
in most cases the advantages outweigh the disadvantages.

This method uses BNC connectors to connect to the Ethernet. This is much simpler
that coaxial cable. A BNC connector can be installed easily without the use of any
tools. Therefore, a user can connect to the Ethernet without the aid of a technician.

Turbo Treck Real-Time TCP/IP User’s Manual

1.10

Twisted Pair Ethernet
In the last few years, technology has made advancements that have made it possible
to construct an Ethernet that no longer needs electrical shielding of a coaxial cable.
This type of Ethernet technology is called twisted pair Ethernet. This technology
allows the user to connect to the Ethernet using a pair of conventional unshielded
copper wires similar to the wires used to connect telephones. One obvious advantage
to this method is reduced cost, but it also protects other computers on the network
from a user who disconnects a single computer. Sometimes it is even possible to
use existing telephone wiring for the Ethernet.

Known technically as 10Base-T, a twisted pair wiring scheme connects each
computer on a network using Ethernet hubs . An Ethernet hub is an electronic
device that simulates the signals on an Ethernet cable. The physical unit is a small
box or hub that usually reside in the wiring closet or telephone room.

1
2
3
4
5
6
7
8

OUTGOING DATA 1 (+)
OUTGOING DATA 2 (-)
INCOMING DATA 1 (+)

INCOMING DATA 2 (-)

EXPANDED VIEW OF
AN RJ-45 PHONE JACK

Cat. 3,4, or 5 UTP Cable
(100 meters max.)

RJ-45 Plug

Fig. 1-5
Exploded View of Twisted Pair Cable

Using this method only allows for a connection to be made between a computer
and a hub within 100 meters. A hub requires power, and can be set up for authorized
personnel to monitor and control its operation over the network. An Ethernet hub
provides the same communication capability as a thin or thick Ethernet. They merely
allow for alternative wiring schemes.

As we have discussed, when using a thick Ethernet setup, the connection requires
an AUI connection. When using a thin Ethernet setup, the connection requires a
BNC connector, and when using a 10Base-T connection, an RJ-45 connector must
be used. The connectors resemble a modular telephone plug. Many Ethernet
manufacturers provide the option for the user to select which one of the three they
want to use. Although only one connector can be used at a time, this allows the
user to integrate easily between the three options.

Introduction to TCP/IP

1.11

Note that pair 1 and 2 and pairs 3 and 6 are “twisted”. This is done for noise
cancellation.

Pin 1 Outgoing Data 1 (+)
Pin 2 Outgoing Data 2 (-)
Pin 3 Incoming Data 1 (+)
Pin 4 No connection
Pin 5 No connection
Pin 6 Incoming Data 2 (-)
Pin 7 No connection
Pin 8 No connection

Fig. 1-6
Pin Assignment of an RJ-45 Connector

Properties of an Ethernet
The Ethernet is a 10 Mbps broadcast bus technology with best-effort delivery
semantics and distributed access control. It is a bus because all stations share a
single communication channel. However, it is also a broadcast system because all
transceivers receive every transmission. It is important to know that all transceivers
do not distinguish among transmissions.

A transceiver passes all packets from the cable to the host interface. The host
interface then chooses which packets the computer should receive, and filters out
all others. It is called a best-effort delivery system because the hardware provides
no information to the sender about whether the packet was successfully delivered.
With that in mind, if a destination machine happens to be powered down, the
packets sent to that machine will be lost without notifying the sender of that fact.
Later, we will see how the TCP/IP protocols accommodate best effort delivery
systems.

Ethernet has no central authority to grant access; therefore we say that access
control is distributed. The Ethernet access scheme is called Carrier Sense Multiple
Access with Collision Detect. It is CSMA because multiple machines can access
the Ethernet simultaneously and each machine determines whether the ether is idle
by sensing if there is a carrier wave present. Before a host interface sends a packet,
it listens to the ether to see if a message is already being transmitted. We call this
carrier sensing. If there is no transmission sensed, then it begins transmitting.
Each transmission is limited in duration, because there is a maximum packet size
(which we will discuss later).

Also, the hardware must observe a minimum idle time between transmissions.
That means that no single pair of communicating machines can use the network
without giving other machines an opportunity for access.

Turbo Treck Real-Time TCP/IP User’s Manual

1.12

Collision Detect and Recovery
When a transceiver begins transmission, the signal does not reach all parts of the
network at the same time. A transmission travels along the cable at approximately
80% the speed of light. It is possible that two machines can sense that the ether is
idle and begin transmitting at the same time. When two electrical signals get crossed
they become scrambled, such that neither is meaningful. These incidents are called
collisions.

The Ethernet makes provisions for this happening. Each transceiver is constantly
monitoring the cable while it is transmitting to see if a foreign signal interferes
with its transmission. Technically, this monitoring is called collision detect. When
a collision is detected, the host interface aborts transmission, and then waits for
activity to subside, and then tries to transmit again. Care must be taken however, or
the network could wind up with all the transceivers busily trying to transmit resulting
in collisions. This is where the Ethernet excels, it uses a binary exponential back-
off policy where a sender delays a random time after the first collision, twice as
long if a second collision occurs, fours times as long if a third attempt results in a
collision, and so on. The logic behind exponential back-off is that in the unlikely
event that many stations try to transmit simultaneously, a severe “traffic jam” could
occur. In such a jam, there is a very good chance that two stations will choose very
similar back-off times, resulting in a high chance for another collision. By doubling
the random delay time, the exponential back-off strategy quickly spreads the
attempts to retransmit over a reasonably long period of time, therefore resulting in
fewer collisions.

Because an Ethernet is a bus with the possibility of collisions, one should not over
utilize the Ethernet. 80% utilization is about the maximum any Ethernet should be
loaded with.

Ethernet Capacity
The standard Ethernet is rated at 10 Mbps. That means that data can be transmitted
onto the cable at 10 million bits per second. Although computers can generate
data at Ethernet speed, raw network speed should not be thought of as the rate at
which two computers can exchange data. Instead, network speed should be thought
of as a measure of the network’s traffic capacity. Think of a network as a water
supply line in a house, and think of packets as the water. A large diameter pipe can
carry a large quantity of water, while a small diameter pipe can only carry a small
amount of water. So if you have a ½” supply line to 20 sinks, chances are that it
will not work efficiently if all the sinks are turned on at the same time. However,
if you have a 3” supply line to those same 20 sinks, it could easily handle supplying
water if those sinks were all turned on at the same time. This is the same way with
an Ethernet. For example, a 10Mbps Ethernet can handle a few computers that
generate heavy loads or many computers generating light loads.

Introduction to TCP/IP

1.13

Ethernet Hardware Addressing
An Ethernet uses a 48-bit addressing scheme. Each computer that attached to an
Ethernet network is assigned a unique 48-bit number that is known as its Ethernet
Address. To assign an Ethernet address, Ethernet hardware manufacturers request
blocks of Ethernet addresses and assign them in sequence as they manufacture
Ethernet interface hardware. Therefore, no two hardware interfaces have the same
Ethernet address. The first 24 bits in an Ethernet Frame are the manufacturer’s ID.

48 bits

24 bits24 bits

Sequence NumbersManufacturer ID

Fig. 1-7
Ethernet Addressing Scheme

Usually, the Ethernet address is fixed in machine-readable code on the host interface
hardware. Because Ethernet addresses belong to hardware devices, they are
sometimes called hardware address or Physical Addresses.

Note: Physical addresses are associated with the Ethernet interface hardware;
moving the hardware interface to a new machine or replacing a hardware
interface that has failed changes that machines physical address.

Knowing that Ethernet physical addresses can change will make it clear why higher
levels of the network software are designed to accommodate such changes.

The host interface hardware examines packets and determines which packets should
be sent to the host. Remember that each interface receives a copy of every packet,
even those addressed to other machines. The host interface uses the destination
address field in the packet as a filter. The interface ignores those packets that are
addressed to other machines, and passes to the host only those packets addressed
to it. The addressing mechanism and the hardware filter are needed to prevent the
computer from becoming overwhelmed with incoming data. Although the
computer’s CPU could perform the check, doing so in the host interface keeps the
traffic on the Ethernet from slowing down processing on all computers.

Turbo Treck Real-Time TCP/IP User’s Manual

1.14

A 48-bit Ethernet address can do more than specify a single destination computer.
An address can be one of three types:

• The physical address of one network interface (a unicast address)
• The network broadcast address
• A multicast address

We typically write the Ethernet address in Hexadecimal. For example:

 0x0ce134121978By convention, the broadcast address
(all 1’s) is reserved for sending to all stations simultaneously.

48 Bits

11111111111111111111111111111111111111

or in hexadecimal:

48 Bits

FFFFFFFFFFFF

 Fig. 1-8
Broadcast Address

Multicast addresses provide a limited form of broadcast in which a subset of the
computers on the network agree to listen to a given multicast address. This set of
computers is called a multicast group. To join a multicast group, the computer
must instruct its host interface to accept the group’s multicast address. The
advantage of multicasting lies in the ability to limit broadcasts. Every computer in
a multicast group can be reached with a single packet transmission. Computers
that choose not to participate in a particular multicast group do not receive packets
sent to the group.

To accommodate broadcast and multicast addressing, Ethernet interface hardware
must recognize more than its physical address. A host interface usually accepts at
least two kinds of packets: those addressed to the interface’s physical address, and
those addressed to the network broadcast address. Some interfaces can be
programmed to recognize multicast addresses or even alternate physical addresses.
When the operating system starts, it initializes the Ethernet interface, giving it a set
of addresses to recognize. The interface then examines the destination address
field in each packet, passing on to the host only those transmissions designated for
one of the specified addresses.

Introduction to TCP/IP

1.15

Special Bits of an Ethernet Address
Under universally administrated addressing, a unique address is embedded in ROM
on each network interface. The first three bytes of the 48-bit address identify the
manufacturer of the adapter; the remaining bits identify the adapter card number.
Under locally administrated addressing, the user is responsible for configuring the
source address of each workstation.

0 8 16 24 31

Target Hardware Address (Bytes 2-5)

Target IP Address (Bytes 0-3)

Sender Hardware Address (Bytes 0-3)

OperationProtocol Address
Length

Hardware Address
Length

Sender IP Address (Bytes 0-1)

Target Hardware Address (Bytes 0-1)

Sender Hardware Address (Bytes 4-5)

Sender IP Address (Bytes 2-3)

Protocol TypeHardware Type

Fig. 1-9
 Ethernet and IEEE 802.3 Source/Destination Address Fields

Obtaining an Ethernet Address Block
To obtain an Ethernet address block for your company, you need to contact IEEE
Standards or visit their website at http://standards.ieee.org/faqs/OUI.html. This
will provide information on getting a Company ID/OUI.

Turbo Treck Real-Time TCP/IP User’s Manual

1.16

Ethernet Frame Format
The Ethernet should be thought of as a link-level connection among machines.
Thus, it makes sense to view the data transmitted as a frame. The term frame
originated from communication over serial lines in which the sender frames the
data by adding special characters before and after the transmitted data. Ethernet
frames are variable lengths, with no frame smaller than 64 bytes or larger than
1518 bytes (header, data, and CRC). As in all packet switched networks, each
Ethernet frame includes a field that contains the address of its destination. Figure
1-10 shows that the Ethernet frame format contains the physical source address as
well as the destination address.

Preamble Destination
Address

Source
Address

Frame
Type Frame Data CRC

8 bytes 6 bytes 6 bytes 2 bytes 46-1500 bytes 4 bytes

Fig. 1-10
Ethernet Frame Format

In addition to identifying the source and destination, each frame transmitted across
the Ethernet contains a preamble, type field, data field, and Cyclic Redundancy
Check (CRC). The preamble consists of 64 bits of alternating 0’s and 1’s to help
receiving nodes synchronize. The 32-bit CRC helps the interface detect the
transmission errors. The sender computes the CRC as a function of the data in the
frame, and the receiver recomputes the CRC to verify that the packet has been
received intact.

The frame type field contains a 16-bit integer that identifies the type of data being
carried in the frame. From the Internet point of view, the frame type field is essential
because it means that Ethernet frames are self-identifying. When a frame arrives at
a given machine, the operating system uses the frame type to determine which
protocol software module should process the frame. The chief advantage of self-
identifying frames is that they allow multiple protocols to be intermixed on the
same physical network without interference. For example, one frame could have
an application program using Internet protocols while another is used for local
experimental protocol. The operating system uses the type field of an arriving
frame to decide how to process the contents. We will see that TCP/IP uses self-
identifying Ethernet frames to distinguish among several protocols.

Introduction to TCP/IP

1.17

The Address Resolution Protocol (ARP)
The Address Resolution Protocol (ARP) is a low-level protocol used to bind
addresses dynamically. To better understand this concept, look at Figure 1-11.
This shows that the host (H) wants to know a machines IP address (B). To resolve
this, host (H) broadcasts a special packet that asks the host with a specific IP
address to respond with its physical address. All hosts receive the request, but only
(B) recognizes its IP address and sends a reply that contains its physical address.
When host (H) receives the reply from host (B), it uses its physical address to send
the Internet packet directly to (B).

HA B C D

Fig. 1-11
ARP Transmission Sequence

When a host makes a broadcast to all the machines on a network, it makes every
machine on the network process the broadcast data. This can be very costly and
time consuming. To reduce communication costs and time, machines that ARP
maintains a cache of recently acquired IP-to-physical address bindings so they do
not have to use ARP repeatedly. Whenever a computer receives an ARP reply, it
saves the senders IP address and corresponding hardware address in its cache for
successive lookups. When transmitting a packet, a computer always looks in its
cache for a binding before sending an ARP request. If a computer finds the desired
binding in its ARP cache, it need not send a broadcast on the network. Experience
shows that because most network communication involves more than one packet
transfer, even a small cache is beneficial.

There are several important points to remember about ARP. First, notice that when
one machine is about to use ARP (because it needs to send information to another
machine), there is a high probability that the second machine will need to
communicate with the first machine in the near future. To anticipate the need of
the second machine, and to reduce network traffic, the first machine sends its IP-
to-physical address binding when sending a request to that machine.
That machine then extracts the first machine’s binding from the request and saves
that information in its ARP cache. It then sends a reply to the first machine. Because
the first machine broadcasts its initial request, all machines on the network receive
it and can extract the IP-to-physical address and store it their cache. This saves
time in future transmissions. When a computer has its host interface replaced

Turbo Treck Real-Time TCP/IP User’s Manual

1.18

(e.g., because the hardware has failed) its physical address changes. Other
computers on the network that have stored a binding in their ARP cache must be
notified of the change. A system can notify others of a new address by sending an
ARP broadcast when it boots.

To summarize, remember:
The sender’s IP-to-physical address binding is included in every ARP broadcast;
receivers update the IP-to-physical address binding information in their cache
before processing an ARP packet.

ARP is a low-level protocol that hides the underlying network physical addressing,
permitting one to assign an arbitrary IP address to every machine. We think of
ARP as a part of the physical network system and not as a part of the Internet
protocols.

ARP Implementation
Functionally, ARP is divided into two parts. The first part maps an IP address to a
physical address when sending a packet. The second part answers requests from
other machines. Address resolution for outgoing packets may seem to be pretty
straightforward, but some small details can complicate an implementation. When
given a destination IP address, the software consults its ARP cache to see if it
knows the mapping from IP address to physical address. If it does, the software
extracts the physical address, places the data in a frame using that address, and
transmits the frame. If it does not know the mapping, then the software must
broadcast an ARP request and wait for a reply.

Many things can happen to complicate an address mapping. The target machine
can be down, or just too busy to accept the request. If so, the sender may not
receive a reply, or the reply may be delayed. Because an Ethernet is best-effort
delivery system, the initial ARP broadcast can also be lost (if this happens, then
the sender should retransmit, at least once). Meanwhile, the sender must store the
original outgoing packet so that it can be sent once the address has been resolved.
In fact, the host must decide whether to allow other application programs to proceed
while it processes an ARP request.

The second part of the ARP code handles ARP packets that arrive from the network.
When an ARP packet arrives, the software first extracts the sender’s IP address
and hardware address pair, and examines the local cache to see if it already has an
entry for that sender. If the cache entry exists for the given IP address, the handler
updates that entry by overwriting the physical address with the physical address
obtained from the packet. The receiver then processes the rest of the ARP packet.
It is important to understand this, for reference to the next section.

Introduction to TCP/IP

1.19

ARP Encapsulation and Identification
Before we continue, it is important to know just what encapsulation is. Encapsulation
is treating a collection of structured information as a whole without affecting, or
taking notice of its internal structure. This means that we can take any information,
and essentially put it in between pertinent information. There are guidelines to
follow that dictate the format of encapsulation. Keeping that in mind, when ARP
messages travel from one machine to another, they must be carried in physical
frames.

Frame Header Frame Data Area

ARP Message

Fig. 1-12
ARP Message Encapsulated in a Physical Network Frame

To identify the frame as carrying an ARP message, the sender assigns a special
value to the type field in the frame header and places the ARP message in the
frames data field. When a frame arrives at a computer, the network software uses
the frame type to determine its contents. In most technologies, a single type value
is used for all frames that carry an ARP message. Network software in the receiver
must then further examine the ARP message to distinguish between ARP requests
and ARP replies.

Turbo Treck Real-Time TCP/IP User’s Manual

1.20

ARP Protocol Format
Unlike most protocols, the data in ARP packets does not have a fixed format header.
Instead to make ARP useful for a variety of network technologies, the length of
fields that contain addresses depend on the type of network. To make it possible to
interpret an arbitrary ARP message, the header includes the fixed fields near the
beginning that specify the lengths of the addresses found in the succeeding fields.
In fact, the ARP message format is general enough to allow it to be used with
arbitrary physical addresses and arbitrary protocol addresses. Fig. 1.13 shows an
ARP message with 4 bytes per line.

0 8 16 24 31

Target Hardware Address (Bytes 2-5)

Target IP Address (Bytes 0-3)

Sender Hardware Address (Bytes 0-3)

OperationProtocol Address
Length

Hardware Address
Length

Sender IP Address (Bytes 0-1)

Target Hardware Address (Bytes 0-1)

Sender Hardware Address (Bytes 4-5)

Sender IP Address (Bytes 2-3)

Protocol TypeHardware Type

Fig. 1-13
Example of ARP Format when Used for IP-to-Ethernet Address Resolution

The length fields depend on the hardware and protocol address lengths, which are
6 bytes for an Ethernet address and 4 bytes for an IP address.

Introduction to TCP/IP

1.21

Hardware Type Specifies a hardware interface type for
which the sender seeks an answer.
Contains a value of 1 for Ethernet.

Protocol Type Specifies the type of high-level protocol
address the sender has supplied. It
contains 0800 for IP addresses.

Operation Specifies an ARP Request (1), ARP
Response (2), Reverse ARP (RARP)
Request (3), or RARP Response (4).

Hardware Address Length Specifies the length of the hardware
address.

Protocol Address Length Specifies the length of the high-level
protocol address.

Sender Hardware Address Specifies the sender’s hardware address
if known.

Sender IP Address Specifies the sender’s Internet Protocol
address if known.

Target Hardware Address When making a request specifies the
sender’s hardware address.

Target IP Address When making a request specifies the
sender’s IP address.

Unfortunately, the variable length fields in ARP packets do not align neatly on 32-
bit boundaries, making Figure 1-13 difficult to read. For example, the sender’s
hardware address, labeled Sender Hardware Address, occupies 6 contiguous bytes,
so it spans two lines in the diagram. Field Hardware Type specifies a hardware
interface type for which the sender seeks an answer; it contains the value 1 for
Ethernet. Similarly, field Protocol Type specifies the type of high-level protocol
address the sender has supplied; it contains 0800 for IP addresses. Field Operation
specifies an ARP request or ARP response. Fields Hardware Address Length and
Protocol Address Length allow ARP to be used with arbitrary networks because
they specify the length of the hardware address and the length of the high-level
protocol address. The sender supplies its hardware address and IP address, if
known, in the fields Sender Hardware Address and Sender IP Address.

Turbo Treck Real-Time TCP/IP User’s Manual

1.22

When making a request, the sender also supplies the target IP address or target
hardware address using fields Target Hardware Address and Target IP Address.
Before the target machine responds, it fills in the missing addresses, swaps the
target and sender pairs, and changes the operation to a reply. Therefore a reply
carries the IP and hardware addresses of the original requester, as well as the IP
and hardware addresses of the machine for which a binding was sought.

Big Endian/Little Endian
To create an Internet that is independent of any particular vendor’s machine
architecture or network hardware, the software must define a standard representation
for data. To illustrate that point, consider what happens when software on one
computer sends a 32-bit binary integer to another computer. The physical transport
hardware moves the sequence of bits from the first machine to the second without
changing the order. However, not all machines store 32 and/or 16-bit integers in
the same way. On some machines, referred to as Little Endian, the lowest memory
address contains the low-order byte of the integer. On others, referred to as Big
Endian, the lowest memory address holds the high-order byte of the integer. Thus,
direct copying of bytes from one machine to another may change the value of the
number.

Standardizing byte-order for integers is especially important in an Internet because
Internet packets carry binary numbers that specify information like destination
addresses and packet lengths. Both the senders and receivers must understand
such quantities. The TCP/IP protocols solve the byte-order problem by defining a
network standard byte order that all machines must use for binary fields in Internet
packets. Each host converts numeric items from the host specific order to network
standard byte order before sending a packet, and converts from network byte order
to the host-specific order when a packet arrives. Naturally, the user data field in a
packet is exempt from this standard – users are free to format their own data however
they choose. Of course, most application programs use the Big Endian format as
well. This is why we transfer packets using the Big Endian method.

The Internet standard for byte order specifies that the most significant byte is sent
first (i.e. Big Endian style). If one considers the successive bytes in a packet as it
travels from one machine to another, a binary integer in that packet has its most
significant byte nearest the beginning of the packet and its least significant byte
nearest the end of the packet. Motorola processors are typically Big Endian types,
while Intel processors are typically Little Endian types. We transfer packets using
the Big Endian format.

Introduction to TCP/IP

1.23

Short Integer 16 Bits

Long Integer 32 Bits

MSB LSB

78563412

Fig. 1-14
Difference Between Big Endian & Little Endian

MSB = Most Significant Byte
LSB = Least Significant Byte

To illustrate the difference between Big Endian and Little Endian, look at Figure
1-15. If we store the number 0x12345678 at memory location 2000 it would
look like this:

Little EndianBig EndianMemory Location

2000

2003

2002

2001

7812

78

56

34

12

34

56

Fig. 1-15
Example of a Number Stored in a Big and Little Endian Processor

Turbo Treck Real-Time TCP/IP User’s Manual

1.24

The Point to Point Protocol (PPP)
PPP or Point-to-Point protocol is designed to transport datagrams from multiple
protocols over point-to-point links in a dynamically changing network. As a result,
the design of PPP addresses has three areas of functionality:

Encapsulation How PPP nests within the stack of
protocols that make up the entire
communications environment in a
network.

Link Control Protocol How PPP establishes, configures, and
monitors the data-link connection.

Network Control Protocols How PPP interacts with a variety of
network-layer protocols, including IP.

PPP requires that both sides negotiate a link for what they both will accept and
how the link will operate. Characteristics such as the maximum size of the datagram
that a given peer will accept, the authentication protocol (if any) that should be
applied to datagrams originating from that sender, and compression schemes are
all open to negotiations between the two systems being linked via PPP. This
negotiation takes the form of a series of packet exchanges until both systems have
agreed to the parameters under which the link will operate.

PPP is intended for use in simple links that transport datagrams between two peers.
PPP supports full-duplex lines with simultaneous bi-directional traffic. Unlike some
link-level protocols, PPP assumes that datagrams arrive in the order they were
sent. Within this limitation, PPP offers an easy connection protocol between hosts,
bridges, routers, and client computers. Previously SLIP was the preferred protocol
for dial-up links. Now however, PPP is almost exclusively used for dial-up links
because of its flexibility. In particular, the link-testing features of PPP enable
more detailed transfer of graphics, binary files, and World Wide Web pages to and
from PC’s and the public Internet or private Intranets.

Introduction to TCP/IP

1.25

Link Control Protocol
When we use PPP the first thing we need to use is LCP or Link Control Protocol.
LCP sends a packet, or a configuration request. A configuration request establishes
what specifics it needs for this request. Both sides of a connection go through the
same procedures. Sometimes, one side will wait for the other side; sometimes
both machines will transmit this information simultaneously. The configuration
request is simply a packet that specifies certain information about how it is going
to utilize the link. If we were to look at a sample frame format it would look
similar to this:

Code

1 Byte

Identifer Total
Length Option

1 Byte

Length

2 Bytes 1 Byte 1 Byte

Value

Var. ...

Fig. 1-16
Sample Configuration Request Format

This frame could be variable length depending on the number of options that are
requested.

PPP Encapsulation
PPP allows the peers on a given link to establish the encapsulation to be used for
datagrams. Frames transmitted via PPP have three fields as shown in Figure1-7.

Protocol Information Padding (optional)

Fig. 1-17
PPP Encapsulation

The fields in a PPP frame are used as follows:

Protocol Field Establishes the network protocol that sent
that datagram and with regard to which it
should be interpreted.

Information Field The packet received from the network-
level protocol to be transmitted over the
physical medium under the control of the
PPP.

Padding Establishes the network protocol that sent
that datagram and with regard to which it
should be interpreted.

Turbo Treck Real-Time TCP/IP User’s Manual

1.26

The Protocol Field
By default, the protocol field is two bytes in length. But, it may optionally shorten
to one byte if both peers agree. It is transmitted in Big Endian (most significant
byte first).

Notice that in the protocol values in the following table, the first byte is always
even and the second byte is always odd. The reason for this is field compression.

Protocol field values are defined in RFC 1700, “Assigned Numbers.” The following
values (given in hexadecimal) are of special interest when PPP is used along with
TCP and IP:

0021
002d
002f
8021
c021
c023
c025

Internet Protocol
Van Jacobson Compressed TCP/IP
Van Jacobson Uncompressed TCP/IP
Internet Protocol Control Protocol
Link Control Protocol
Password Authentication Protocol
Link Quality Report
Challenge Handshake Authentication Protocolc223

0000-02ff Network Layer protocols
Network Control Protocols8000-bfff

c000-fff Link-Layer Control Protocols

Fig. 1-18
Protocol Field Values

The Information Field
The information field contains the packet sent down by the network level. As is
usual in stacked protocols, PPP encapsulates the packet without interpreting it.
Unless otherwise established by peer – to – peer negotiation, the default Maximum
Receive Unit length for the information field is 1500 bytes including any padding
but excluding the Protocol field.

The Padding Field
The padding field supports protocols and equipment that prefer (or require) that
the overall packet length be extended to a 32-bit boundary or be otherwise fixed.
Its use is not mandatory except as implied by configuration options negotiated
between the peers in the link.

Introduction to TCP/IP

1.27

PPP Link Operation
Before user information can be sent across a point-to-point link, each of the two
endpoint systems comprising the desired link must test the link and negotiate how
the link will be configured and maintained.

These functions are performed using the Link Control Protocol. The PPP software
on each peer (endpoint) system creates packets for this purpose, framed with the
standard PPP protocol field. Once the link has been established, each peer
authenticates the other if so requested. Finally, PPP must send Network Control
Protocol packets to negotiate the network-layer protocol(s) that will be supported
in this link.

Once the link has been established and both peers have agreed to support a given
network-layer protocol on this link, datagrams from that network-layer protocol
may be sent over the link.

The link will remain available for communications until it is explicitly closed.
This can happen at the LCP or NCP level, either by administrator intervention or
through a time-out interrupt. Specific network-layer protocols can be enabled and
disabled on the link at any time without affecting the capability of the PPP link to
support other network-layer protocol transmissions.

Turbo Treck Real-Time TCP/IP User’s Manual

1.28

Understanding IP Addresses
This section describes the underlying concepts if IP addresses. We will discuss
the format of an IP address, the concepts of a sub-netting and super-netting, and
why we use them. Let’s first look at basic IP address formatting.

IP Address Format
IP addresses are a standard 32 bits long. Figure 1-19 shows the format of an IP
address:

208.229.201.0

Fig. 1-19
Sample IP Address Format

The class field can be defined by the first three numbers of the IP address. In our
example, the number would be 208. There are three types of classes. They are
Class A, Class B, and Class C. Think of an Internet as a large network like any
other physical network. The difference is that the Internet is a virtual structure that
is implemented entirely in software. This allows the designers to choose packet
formats and sizes, addresses, delivery techniques, and so on. Nothing is dictated
by hardware. For addresses, designers of TCP/IP chose a scheme similar to physical
network addressing in which each host on the Internet is assigned a 32-bit integer
address, called its IP Address. The clever part of IP addressing is that the integers
are carefully chosen to make routing efficient. An IP address encodes the
identification of the network to which a host attaches as well as the identification
of a unique host on that network.

We can follow some guidelines to break this up and analyze the format for following
the rules of IP addressing:

 Class HostNetwork

In the simplest case, each host attached to an Internet is assigned a 32-bit universal
identifier as its Internet address. The bits of IP addresses for all hosts on a given
network share a common prefix, as mentioned earlier.

Introduction to TCP/IP

1.29

Each address is a pair: both network and host on that network.
Given an IP address, its class can be determined from the three high-order bits,
with two bits being sufficient to distinguish among the three primary classes. Class
A addresses, which are used for a small amount of networks that have more than
65,536 hosts, devote 7 bits to network and 24 bits to the host. Class B addresses,
which are used for intermediate size networks that have between 256 and 65,536
hosts, allocate 14 bits to the network and 16 bits to the host. Class C addresses,
which are used for networks with less than 256 hosts, allocate 21 bits to the network
and only 8 bits to the host. Note that the IP address has been defined in such a way
that it is possible to extract the host or network portions quickly. Routers, which
use the network portion of an address when deciding where to send a packet,
depend on efficient extraction to achieve high speed.

Network and Broadcast Addresses
We have already said that the major advantage of encoding network information in
Internet addresses is that it makes efficient routing possible. Another advantage is
that Internet addresses can refer to networks as well as hosts. By convention, host
0 is never assigned to an individual host. Instead, an IP address with host 0 is used
to refer to the network itself.

Another significant advantage of the Internet addressing scheme is that it includes
a broadcast address that refers to all hosts on the network. According to the
standard, any host containing all 1’s is reserved for broadcast. On many network
technologies, broadcasting can be as efficient as normal transmission; on others,
broadcasting is supported by the network software, but requires substantially more
delay than a single transmission. Some networks do not support broadcast at all.
Therefore, having an IP address does not guarantee the availability or efficiency of
broadcast delivery.

Turbo Treck Real-Time TCP/IP User’s Manual

1.30

Limited Broadcast
Technically, the broadcast address we just described is called a directed broadcast
address because it contains both a valid network ID and the broadcast host ID. A
directed broadcast can be interpreted unambiguously at any point on the Internet
because it uniquely identifies the target network in addition to specifying broadcasts
on that network. Directed broadcast addresses provide a powerful (and somewhat
dangerous) mechanism that allows a remote system to send a single packet that
will be broadcast on the specified network.

From an addressing point of view, the chief disadvantage of directed broadcast is
that it requires knowledge of the network address. A limited broadcast address
provides a broadcast address for the local network independent of the assigned IP
address. The local broadcast address consists of 32 1’s (it is sometimes called the
all 1’s broadcast address). A host may use the limited broadcast address as part of
a start-up procedure before it learns its IP address or the IP address for the local
network. Once the host learns the correct IP address for the local network, it
should use the directed broadcast. As a general rule, TCP/IP protocols restrict
broadcasting to the smallest possible set of machines.

Drawbacks in Internet Addressing
Encoding network information in an Internet address does have some disadvantages.
The most obvious disadvantage is that addresses refer to network connections, not
to the host computer. Another weakness of the Internet addressing scheme is that
when any Class C network grows to more than 255 hosts, it must have its address
changed to a Class B address.

Note: If a host computer moves from one network to another, its IP
address must change.

Introduction to TCP/IP

1.31

Dotted Decimal Notation
When communicating to humans, in either technical documents or through
application programs, IP addresses are written as four decimal integers separated
by decimal points. Each integer gives the value of one byte of the IP address. For
example:

10000000 00001010 00000010 00011110

is written:

128.10.2.30

When we express IP addresses, we will use dotted decimal notation. This table
summarizes the range of values for each class of IP addresses:

Class Highest Address Lowest Address
1.0.0.1A 126.255.255.254

128.1.0.1B 191.255.255.254
192.0.1.1C 223.255.255.254
224.0.0.0D 239.255.255.255
240.0.0.0E 247.255.255.255

Fig. 1-20
IP Address Denotations

Loopback Address
In Figure 1-20 we see that not all-possible addresses have been assigned to classes.
For example, address 127.0.0.0, a value from the class A range, is reserved for
loopback; and is intended for use in testing TCP/IP and for inter-process
communication on the local machine. When any program uses the loopback address
for the destination, the computer returns the data without sending the traffic across
any network. A host or router should never propagate routing or reachability
information for network number 127; it is not a network address.

Turbo Treck Real-Time TCP/IP User’s Manual

1.32

Special Address Conventions
In practice, IP uses only a few combinations of 0’s or 1’s.

All 0’s

All 0’s Host

All 1’s

Net All 1’s

anything (often 1)127

This Host 1

Host on this net 2

Limited Broadcast (local net)3

Direct Broadcast for net 4

Loopback 5

Fig. 1-21
Special Forms of IP Addresses.

As the notes in Figure 1-21 show, using all 0’s for the network is only allowed
during the bootstrap procedure. It allows a machine to communicate temporarily.
Once the machine learns its correct network and IP address, it must not use network
0.

1 Allowed only at system startup and is never a valid destination address.
2 Never a valid source address.
3 Never a valid source address.
4 Never a valid source address.
5 Should never appear on a network.

Introduction to TCP/IP

1.33

IP Addressing Format
Let’s look at the physical setup of an IP address. If we have an IP address number
of:

208.229.201.66

or

11010000.11100101.11001001.01000010

This number represents the address of a particular machine on a network. This is
that machines personal “identification” number. Each machine on that network
will have the same first three numbers. For example, a machine with the address:
208.229.201.68, would still be on the same network and would still be a class C
address. However, this would denote a different machine.

Note: When an IP address ends in 0, it denotes the physical network, or wire.
For Example: 208.229.201.0

Turbo Treck Real-Time TCP/IP User’s Manual

1.34

Netmasks
Netmasking allows the grouping together and breaking-up of IP address space. To
illustrate this point lets look at the format of IP addressing in binary:

11010000 010000101100100111100101

Fig. 1-22
Standard IP Address in Binary

110 10000 11100101 11001001 01000010

Fig. 1-23
Class Identifying Digits for an IP Address

(i.e. Class A, B, or C)

If we were to set up a netmask, we would essentially be creating an “overlay” for
an IP address. It would look similar to this (in binary):

11111111 11111111 11111111 00000000

Network Host

Fig. 1-24
Sample Netmask

11111111 00000000

11001001 0100001011010000 11100101

11111111 11111111

Network Host

Fig. 1-25
Netmasking Example

Introduction to TCP/IP

1.35

The all 1’s side represents the network side. The all 0’s side represents the host
side. If you were to take this netmask and “overlay” it on the IP address format like
Fig. 1.25, you can see that the default “line” between the network and the host
falls between the third and fourth number.

Note: Every machine on a network wire must agree on the value of
the netmask. The values must be identical for the netmask to operate correctly.

Reserved Addresses
In a netmask, there are guidelines that must be followed for correct setup with no
errors. The most important thing to remember is this:

If the host or network portion of the IP Address (after applying the netmask)
is all 1’s or 0’s, it cannot be assigned as a machine’s IP address.

Any combination of numbers that translate into binary as being all 1’s or 0’s also
cannot be used. Depending on where the netmask is setup, the reserved numbers
will change. For example:

192

0 X X X

128 0 X X

127 X X X

0 0 X

Fig. 1-26
Reserved Addresses

In these examples the network portion of the IP address is 0, except for 127.X.X.X
which is reserved for loopback.

In the next section, we will see how we can “change” the position of the bits in the
network section of the netmask to manipulate our network for our personal needs.

Turbo Treck Real-Time TCP/IP User’s Manual

1.36

Sub-Netting & Super-Netting
Let’s look at an example to explain the use of sub-netting and super-netting. Suppose
that we have applied for an IP address, and we received a class C address. In our
business, we have 20 machines in the shipping department, 20 machines in the
engineering department, and 50 machines in the clerical department. We want all
those machines to be able to access the network independently based on their
departments. Instead of applying for 3 separate class C addresses, we can
manipulate our current class C address to accommodate our needs. We know that
we have 254 physical addresses available, but because we do not want them all on
the same physical network, we need to find an alternative way to use our current
address. What we need to do is essentially “break-up” our current address. We do
this by what is referred to as sub-netting. We know that in the structure of an IP
address anything that is a 1 (in binary), is referenced as the network, and anything
that is a 0 is referenced as the host. We can restructure the netmask to move where
the division is between the network portion and the host portion.

Hexadecimal

11111111

FFFF

Netmask 11111111 11111111

FF

IP Address 208 229 201 0

00000000

00

Hexadecimal

11111111

FFFF

Netmask 11111111 11111111

FF

IP Address 208 229 201 0

11000000

C0

Fig. 1-27
Illustration of Sub-Netting

In the first chart of Figure 1-27, we see the default setup for a class C netmask. We
see the result of sub-netting in the second chart of Figure 1-27. We have essentially
changed the location of the bar between the third and fourth integers of our IP
address. We changed the location by changing the value of the netmask from:

FF FF FF 00 to FF FF FF C0

Notice that we have changed the first two bits of the last byte to represent the
network address. In order to achieve super-netting the same procedure is followed
with the exception that we move the bar between the third and fourth bytes to the
left instead of to the right. It allows us to group several class X addresses together
to be one network address.

Introduction to TCP/IP

1.37

The Internet Protocol (IP)
By concept, a TCP/IP Internet provides three sets of services as shown in Figure 1-
28; by the way they are arranged in the figure, we can see that there seems to be a
dependency among them.

APPLICATION SERVICES
RELIABLE TRANSPORT SERVICE

CONNECTIONLESS PACKET DELIVERY SERVICE

Fig. 1-28
Three Conceptual Layers of Internet Services

At the lowest level, a connectionless delivery service provides a foundation on
which everything rests. At the next level, a reliable transport service provides a
higher-level platform on which applications depend. We will explore these services
in more detail to see what each one provides and which protocols are associated
with them.

Connectionless Packet Delivery Service
The most fundamental Internet service consists of a packet delivery system.
Technically, the service is defined as an unreliable, best effort connectionless packet
delivery system; similar to the service provided by network hardware that operates
on a best-effort delivery pattern. The service is called unreliable because delivery
is not guaranteed. The packet may be lost, duplicated, delayed, or delivered out of
order. The service will not detect such conditions, nor will it inform the sender or
receiver. The service is called connectionless because each packet is treated
independently from all others. A sequence of packets sent from one computer to
another may travel over different paths, or some may be lost while others are
delivered. Finally, the service is referred to as best-effort delivery because the
Internet software makes an earnest attempt to deliver packets. That is, the Internet
does not discard packets arbitrarily. Unreliability arises only when resources are
exhausted or underlying networks fail.

Turbo Treck Real-Time TCP/IP User’s Manual

1.38

Purpose of the Internet Protocol
The protocol that defines the unreliable, connectionless delivery mechanism is
called the Internet Protocol and is usually referred to by its initials IP. IP provides
three important definitions. First, the IP protocol defines the basic unit of data
transfer used throughout a TCP/IP Internet. Thus, it specifies the exact format of
all data as it passes across a TCP/IP Internet. Second, IP software performs the
routing function, choosing a path over which data will be sent. Third, in addition
to the precise, formal specification of data formats and routing, IP includes a set of
rules that embody the idea of unreliable packet delivery. The rules characterize
how hosts and routers should process packets, how and when error messages should
be generated, and the conditions under which packets can be discarded. IP is such
a fundamental part of the design that a TCP/IP Internet is sometimes called an IP-
based technology.

IP is designed for routing traffic between networks, or across a network of networks.
An application running on a client machine generates messages or data to be sent
to a machine located on another network. IP receives these messages from the
transport layer software residing on a server that provides a gateway from the
LAN (Local Area Network) or WAN (World Area Network) onto the Internet (or
other TCP/IP network). Not all terminals on the network are end-user machines or
gateways to LANs and WANs. Some terminals are devoted to routing packets
along various potential pathways from the sending terminal to the receiving terminal.

The Internet Datagram
On a physical network, the unit of transfer is a frame that contains a header and
data, where the header gives information such as the (physical) source and
destination addresses. The Internet calls its basic transfer unit an Internet datagram,
sometimes referred to as an IP datagram or merely a datagram. Like a typical
physical network frame, a datagram is divided into header and data areas. Also
like a frame, the datagram header contains the source and destination addresses
and a field type that identifies the contents of the datagram. The difference is that
the datagram header contains IP addresses whereas the frame header contains
physical addresses.

Datagram Header Datagram Data Area

Fig. 1-29
General form of an IP datagram

IP specifies the header format including the source and destination IP addresses.
IP does not specify the format of the data area; it can be used to transport arbitrary
data.

Introduction to TCP/IP

1.39

Datagram Format
Now that we have described the general layout of an IP datagram, we can look at
the contents in more detail. Figure 1-30 shows the arrangement fields in a datagram:

0000 0000
0123 4567

0011 1111
8901 2345

1111 2222
6789 0123

2222 2233
4567 8901

VER TOSHLEN Total Length

Identification FLG Total Length

TTL Protocol Header Checksum

Source IP Address

IP Options (If Any) Followed by DATA

Destination IP Address

Fig. 1-30
 Internet Datagram Format Basic Unit of Transfer in a TCP/IP Internet

Because datagram processing occurs in software, the contents and format are not
restricted by any hardware. For instance, the first 4-bit field in a datagram (VER)
contains the version of the IP protocol that was used to create the datagram. It is
used to verify that the sender, receiver, and any routers in between them agree on
the format of the datagram. All IP software is required to check the version field
before processing a datagram to ensure it matches the format the software expects.
If standards change, machines will reject datagrams with protocol versions that
differ from theirs, preventing them from misinterpreting datagram contents
according to an outdated format.

The header length field (HLEN), also 4 bits, gives the datagram header length
measured in 32-bit words. As we will see, all fields in the header have fixed length
except for IP OPTIONS and corresponding PADDING fields. The most common
header, which contains no options or padding, measures 20 bytes and has a header
length field equal to 5.

The TOTAL LENGTH field gives the length of the IP datagram measured in bytes,
including bytes in the header and data. The size of the data area can be computed
by subtracting the length of the header (HLEN) from the TOTAL LENGTH. Because
the TOTAL LENGTH field is 16 bits long, the maximum possible size of an IP
datagram is 65,535 bytes. It may become more important if future networks can
carry data packets larger than 65,535 bytes.

Turbo Treck Real-Time TCP/IP User’s Manual

1.40

Datagram Type of Service and Datagram Precedence
Informally called Type of Service (TOS), the 8-bit SERVICE TYPE field specifies
how the datagram should be handled and is broken down into five subfields.

Three PRECEDENCE bits specify datagram precedence, with values ranging from
0 (normal precedence) through 7 (network control), allowing senders to indicate
the importance of each datagram. Although most host and router software ignores
type of service, it is an important concept because it provides a mechanism that
can allow control information to have precedence over data. For example, if all
hosts and routers honor precedence, it is possible to implement congestion control
algorithms that are not affected by the by the congestion they are trying to control.
Bits D, T, and R specify the type of transport the datagram desires. When set, the
D bit requests low delay, the T bit requests high throughput, and the R bit requests
high reliability. Of course, it may not be possible for an Internet to guarantee the
type of transport requested (i.e. it could be that no path to the destination has the
requested property). Thus, we think of the transport request as a hint to the routing
algorithms, not as a demand. If a router knows more than one possible route to a
given destination, it can use the type of transport field to select one with
characteristics closest to those desired. For example, suppose a router can select
between a low capacity leased line and a high bandwidth (but high delay) satellite
connection. Datagrams carrying a keystroke from a user to a remote computer
could have the D bit set requesting that they be delivered as quickly as possible,
while datagrams carrying a bulk file transfer could have the T bit set requesting
that they travel across the high capacity satellite path.

Datagram Encapsulation
Before we can understand the next fields in the datagram, it is important to consider
how datagrams relate to physical network frames. One question that you may
have is “How large can a datagram be?” Unlike physical network frames that must
be recognized by hardware, datagrams are handled by software. They can be any
length the protocol designers choose. The current datagram format allows for 16
bits to the total length field, limiting the datagram to at most 65,535 bytes.

More fundamental limits on datagram size arise in practice. We know that as
datagrams move from one machine to another, the underlying physical network
must always transport them. To make internet transportation efficient, we would
like to guarantee that each datagram travels in a distinct physical frame.

The idea of carrying one datagram in one network frame is called encapsulation.
To the underlying network, a datagram is like any other message sent from one
machine to another. The hardware does not recognize the datagram format, nor
does it understand the IP destination address. Therefore, when one machine sends
an IP datagram to another, the entire datagram travels in the data portion of the
network frame.

Introduction to TCP/IP

1.41

Understanding Checksums

Introduction
A checksum allows information to follow a set of guidelines that is pertinent to the
correct sending and receiving of data. Checksums are used in several different
types of protocols. For example, UDP, TCP, and IP, all use variations of a checksum.
A good way to understand the meaning and the use of the checksum is to analyze
the format. Look at the chart below; we can see that the format of an IP header
provides us with certain information.

VER TOSHLEN Total Length

Identification FLG Total Length

TTL Protocol Header Checksum

Source IP Address

IP Options (If Any) Followed by DATA

Destination IP Address

IP Options (If Any) followed by DATA

For our example, we will plug in the following information for each of these fields:

VER (Veserion)
HLEN (Header Length)
TOS (Type of Service)
Total Length
Indentification
FLG (Flag)/Fragment Offset
TTL (Time to Live)
Protocol
Header Checksum
Source IP Address
Destination IP Address

4
5
0
14
1
0
255
17 (UDP)
0
1.2.3.4
1.2.3.5

Turbo Treck Real-Time TCP/IP User’s Manual

1.42

Explanation of Checksums
If you notice, the value for the header checksum equals 0. To begin with, the value
for the checksum is always set to zero and then simple addition is done.

Now if we take the values in hexadecimal and simply add them we get a result.
That result is then plugged back into the original checksum computation and then
sent. This is all done in the format of 16-bit words.

Computing
4500 +
000E +
0001 +
0000 +
FF11 +
0000 +
0102 +
0304 +
0102 +

= 14C2D
0305

Our result is larger than 16 bits so we must perform the carry function.

14C2D

= 4C2E
+ 0001

Now we must perform the ones complement:

= B3D1
~(4C2D)

This is the interesting part of what the checksum does. Once the value has been
calculated, the system takes the ones complement of that result. The ones
complement is a function that takes the value of the result in binary and essentially
switches the value. If the binary unit has a value of 1, it becomes 0. And if the
binary unit has a value of 0, it becomes 1. That value then becomes the value for
the checksum field.

Introduction to TCP/IP

1.43

The receiver also uses the ones complement function when checking the information
that was received. After the value is calculated and all the necessary carries are
done, the system then takes the ones complement of the number. This number will
always be equal to zero.
To illustrate this point:

Computing
4500 +
000E +
0001 +
0000 +
FF11 +
B3D1 +
0102 +
0304 +
0102 +

= 1FFFE
0305

Checksum Field

Our result is larger than 16 bits so we must perform the carry function.

1FFFE

= FFFF
+ 0001

Now we must perform the ones complement:

= 0000
~(FFFF)

When the checksum is configured, as we mentioned earlier, the value of the
checksum is set to 0. Then after the addition is done, the result is then sent to the
receiver in the checksum field. The receiver then calculates the data for itself. The
result that the receiver gets should be equal to zero. If this is the case then the
information will follow. After the values have been calculated, there may be an
instance where the value is larger than a 16-bit word. As we mentioned earlier, the
calculations are done in short word format. If the result is larger than a 16-bit
word, the system performs a carry that allows the value to be shown as a 16-bit
word. This function is can be done a maximum of 2 times.

Turbo Treck Real-Time TCP/IP User’s Manual

1.44

The Internet Control Message Protocol (ICMP)
The previous section shows how the Internet Protocol software provides an
unreliable connectionless datagram delivery service by arranging for each router
to forward datagrams. A datagram travels from router to router until it reaches one
that can deliver the datagram directly to its final destination. If a router cannot
route or deliver a datagram, or if the router detects an unusual condition that affects
its ability to forward the datagram, the router needs to inform the original source to
take action to avoid or correct the problem. In this section we will discuss a
mechanism that Internet routers and hosts use to communicate control or error
information. We will see that routers use the mechanism to report problems, and
the hosts use it to test whether destinations are reachable.

The Internet Control Message Protocol
In the connectionless system we have described so far, each router operates
autonomously, routing or delivering datagrams that arrive without coordinating
with the original sender. This system works well if all machines operate correctly
all the time. Aside from communication lines or processors failing; there are a
variety of conditions that will impede IP’s ability to deliver datagrams: when the
destination machine is temporarily or permanently disconnected from the network,
when the time-to-live counter expires, or when intermediate routers become so
congested that they cannot process the incoming traffic. The important difference
between having a single network implemented with dedicated hardware and an
internet implemented with software is that in the former, the designer can add
special hardware to inform attached hosts when problems arise. In an internet,
which has no such hardware mechanism, a sender cannot tell whether a delivery
failure resulted from a local malfunction or a remote one. This can make debugging
difficult. The IP protocol itself contains nothing to help the sender test connectivity
or learn about such failures.

Designers added a special-purpose message mechanism to the TCP/IP protocols
to allow routers in an internet to report errors or provide information about
unexpected circumstances. This mechanism, known as the Internet Control
Message Protocol (ICMP), is considered a required part of IP and must be included
in every IP implementation.

Like all other traffic, ICMP messages travel across the Internet in the data portion
of IP datagrams. The ultimate destination of an ICMP message is not an application
program or user on the destination machine, but the Internet Protocol software on
that machine. That is, when an ICMP error message arrives, the ICMP software
modules handle it. Of course, if ICMP determines that a particular higher-level
protocol or application program has caused a problem, it will inform the appropriate
module.

Introduction to TCP/IP

1.45

So in other words:
The Internet Control Message Protocol allows routers to send error or control
messages to other routers or hosts; ICMP provides communication between the
Internet Protocol software on one machine to the Internet Protocol software on
another.

Initially designed to allow routers to report the cause of delivery errors to hosts,
ICMP is not restricted to routers. Although guidelines restrict the use of some
ICMP messages, an arbitrary machine can send an ICMP message to any other
machine. Thus, a host can use ICMP to correspond with a router or another host.
The chief advantage of allowing hosts to use ICMP is that it provides a single
mechanism used for all control and information messages.

Error Reporting vs. Error Correction
Technically, ICMP is an error reporting mechanism. It provides a way for routers
that encounter an error to report the error to the original source. Although the
protocol specification outlines intended uses of ICMP and suggests possible actions
to take in response to error reports, ICMP does not fully specify the action to be
taken for each possible error. When a datagram causes an error, ICMP can only
report the error condition back to the original source of the datagram; the source
must relate the error to an individual application program or take other action to
correct the problem.

Most errors stem from the original source, but some do not. Because ICMP reports
problems to the original source, it cannot be used to inform intermediate routers
about problems. Unfortunately, the original source has no responsibility for the
problem or control over a misbehaving router. In fact, the source may not be able
to determine which router caused the problem.

You might ask, “Why restrict ICMP to communication with the original source?”
Well, to answer that question, we know that a datagram only contains fields that
specify the original source and the ultimate destination. It does not contain a
complete record of its trip through the Internet (except for unusual cases where the
record route option is used). Furthermore, because routers can establish and change
their own routing tables, there is no global knowledge of routes. Thus, when a
datagram reaches a given router, it is impossible to know the path it has taken to
get there. If the router detects a problem, it cannot know the set of intermediate
machines that processed the datagram, so it cannot inform them of the problem.
Instead of silently discarding the datagram, the router uses ICMP to inform the
original source that a problem has occurred, and trusts that host administrators
will cooperate with network administrators to locate and repair the problem.

Turbo Treck Real-Time TCP/IP User’s Manual

1.46

ICMP Message Delivery
ICMP messages require two levels of encapsulation as Figure 1-31 shows. Each
ICMP message travels across the Internet in the data portion of an IP datagram,
which itself travels across each physical network in the data portion of a frame.
Datagrams carrying ICMP messages are routed exactly like datagrams carrying
information for users; there is no additional reliability or priority. Thus, error
messages themselves may be lost or discarded. Furthermore, in an already congested
network, the error messages may cause additional congestion. An exception is
made to the error handling procedures if an IP datagram carrying an ICMP message
causes an error. The exception, established to avoid the problem of having error
messages about error messages, specifies that ICMP messages are not generated
from errors that result from datagrams carrying ICMP error messages.

ICMP
Header ICMP Data

Datagram
Header Datagram Data Area

Frame
Header Frame Data Area

Fig. 1-31
Two Levels of ICMP Encapsulation

The ICMP message is encapsulated in an IP datagram, and then is encapsulated
into a frame datagram. To identify the ICMP, the datagram protocol field contains
the value 1.

It is important to keep in mind that even though ICMP messages are encapsulated
and sent using IP datagrams, it is not considered a higher-level protocol – it is a
required part of IP. The reason for using IP to deliver ICMP messages is that they
may need to travel across several physical networks to reach their final destination.
Thus, they cannot be delivered by the physical transport alone.

Introduction to TCP/IP

1.47

ICMP Message Format
Although each ICMP message has its own format, they all begin with the same
three fields. These are an 8-bit integer message TYPE field that identifies the
message, an 8-bit CODE field that provides further information about the message
type, and a 16-bit CHECKSUM field (ICMP uses the same additive checksum
algorithm as IP but the ICMP checksum only covers the ICMP message). In addition,
ICMP messages that report errors always include the header and the first 64 data
bits of the datagram causing the problem.

The reason for returning more than the datagram header alone is to allow the receiver
to determine which protocol(s) and which application program were responsible
for the datagram. Higher-level protocols in the TCP/IP suite are designed so that
crucial information is encoded in the first 64 bits.

The TYPE field defines the meaning of the message as well as its format. The
types include:

ICMP Message Type

Echo Request
Time Exceeded for a Datagram
Parameter Problem on a Datagram
Timestamp Request

Echo Reply
Destination Unreachable
Source Quench
Redirect (change a route)

Address Mask Reply

Timestamp Reply
Information Request (obsolete)
Information Reply (obsolete)
Address Mask Request

Type Field

4
5
8

11

0
3

16
17
18

12
13
14
15

Fig. 1-32
ICMP Message Types

Turbo Treck Real-Time TCP/IP User’s Manual

1.48

Testing Destination Reachability and Status (Ping)
TCP/IP protocols provide facilities to help network managers or users to identify
network problems. One of the most frequently used debugging tools invoke the
ICMP echo request and echo reply messages. A host or router sends an ICMP
echo request message to a specified destination. Any machine that receives an
echo request formulates an echo reply and returns it to the original sender. The
request sends an optional data area; the reply contains a copy of the data sent in the
request. The echo request and associated reply can be used to ensure that a
destination is reachable and responding. Because both the request and reply travel
in IP datagrams, successful receipt of a reply verifies that major pieces of the
transport system work. First, IP software on the source computer must route the
datagram. Second, intermediate routers between the source and destination must
be operating and must route the datagram correctly. Third, the destination machine
must be running (it must at least respond to interrupts), and both ICMP and IP
software must be working. Finally, all routers along the return path must have
correct routes.

On many systems, the command users invoke to send ICMP echo requests is referred
to as ping. A sophisticated version of ping can send a series of ICMP echo requests,
capture responses, and provide statistics about datagram loss. It allows the user to
specify the length of the data being sent and the interval between requests. Less
sophisticated versions merely send one ICMP echo request and await a reply. Figure
1-33 shows the format of an echo request and reply messages:

0 8 16 31
TYPE (8 or 0) CODE (0) CHECKSUM

IDENTIFIER SEQUENCE NUMBER
OPTIONAL DATA

…

Fig. 1-33
Format of an Echo Request and Reply

The field OPTIONAL DATA is a variable length field that contains data to return to
the sender. An echo reply always returns the same data that was received in the
request. The sender, to match replies to the requests, uses fields SEQUENCE
NUMBER and IDENTIFIER. The value of the TYPE field specifies whether the
message is a request (8) or a reply (0).

Introduction to TCP/IP

1.49

Summary
Normal communication across an internet involves sending messages from an
application on one host to an application on another host. Routers may need to
communicate directly with the network software on a particular host to report
abnormal conditions or to send the host new routing information. The Internet
Control Message Protocol provides for the extra-normal communication among
routers and hosts; it is an integral, required part of IP.

The User Datagram Protocol (UDP)
The User Datagram Protocol or UDP is the primary mechanism that application
programs use to send datagrams to other application programs. UDP messages
contain both destination port numbers and source port numbers in addition to the
data being sent. This makes it possible for the UDP software at the destination to
deliver information to the correct recipient and for the recipient to send a reply.

UDP utilizes the underlying IP to transport information from one machine to another.
By using the IP format for delivery, UDP inherits the same characteristics of an IP
message. It is an unreliable, connectionless datagram service. For example, it
does not use acknowledgments to makes sure messages have arrived. It does not
order incoming messages, and it does not provide feedback to control the rate at
which information passes between machines. From this we can gather that UDP
messages can be lost, duplicated, or arrive out of order. We also know that packets
can be sent faster than the recipient can process them. To reiterate:

The User Datagram Protocol (UDP) provides an unreliable, connectionless delivery
service using IP to transport messages between machines. It uses IP to carry
messages, but utilizes the distinction among multiple destinations.

An application program that relies on UDP accepts full responsibility for the
problems of reliability, including message loss, duplication, delay, and even out-
of-order delivery. However, we can look at certain applications that do not need to
utilize these strict options. For example, if a connection is made over the Internet
that needs to transmit voice and video applications, we can see that speed is more
important than reliability. Because packets are transmitted at such a high rate of
speed, we are willing to sacrifice the reliability for rate of transfer.

If we were using a reliable method for voice and video, we would have to wait for
two machines to exchange information to ensure that the information will not be
lost, sacrificing time. However, if we were to make the same connection using
UDP there would be a steady steam of packets entering the application, because
there is no use of acknowledgements. If two packets were to get discarded or sent
out-of-order, or even lost, the result that we might see would be very minimal.
Again the important thing to decide is which is more important speed, or reliability.

Turbo Treck Real-Time TCP/IP User’s Manual

1.50

UDP Message Format
Each UDP message is referred to as a user datagram. A user datagram consists of
two parts: a UDP header and a UDP data area. As we can see in Figure 1-34, a
UDP header is divided into four parts: a 16-bit field that specifies the port from
which it originated, the port that it is going to, the size of the message (or message
length), and the UDP checksum.

0 16 31
UDP SOURCE PORT UDP DESTINATION PORT

UDP MESSAGE LENGTH UDP CHECKSUM
DATA

…

Fig. 1-34
Format of Fields in a UDP Datagram

The SOURCE PORT and DESTINATION PORT fields contain 16-bit UDP protocol
numbers, which are used as application identifiers among the processes waiting to
receive them. The SOURCE PORT is optional. However, when it is used, it
specifies the port to which replies should be sent. If the field is not used, it should
be set to zero.

The LENGTH field contains a count of bytes in the UDP datagram, including the
header and the user data. The minimum number that can be in this field is eight, the
length of the header by itself.

As we mentioned earlier the CHECKSUM field is optional. A value of zero in the
checksum field indicates that the checksum has not been computed.

Introduction to TCP/IP

1.51

UDP Pseudo-Header
To compute a checksum, UDP attaches a pseudo-header to the UDP datagram,
and pads the datagram with one byte of zeros and then computes the checksum
over the entire object. It is important to remember that the padding of zeros and
the pseudo-header are not transmitted with the UDP datagram, nor are they included
in the length.

The purpose of using a pseudo-header is to verify that the UDP datagram has
reached the appropriate destination. The pseudo header is not transmitted to the
recipient. The receiver takes the information contained in the IP header and places
it into the pseudo-header format for the purpose of computing the checksum.

SOURCE IP ADDRESS
DESTINATION IP ADDRESS

ZERO PROTOCOL UDP LENGTH

 Fig. 1-35
Pseudo Header Format Used to Compute a Checksum.

UDP Encapsulation
The UDP encapsulation format is one that works in the transport protocol layer.
UDP lies in the layer above the Internet Protocol Layer. By concept, application
programs access UDP, which use IP to send and receive datagrams. We can see an
illustration of this in Figure 1-36.

Conceptual Layering
Application

User Datagram (UDP)
Internet (IP)

Network Interface

Fig. 1-36
Conceptual Layering of UDP Between Application Programs and IP

By layering UDP above IP, we can encapsulate a complete UDP message, including
the UDP header and data, into an IP datagram.

As we learned earlier, encapsulation means that the protocol, UDP in this case,
basically “inserts” the information into a frame, and then sends it across the network.
In the example of UDP, it takes the information and attaches its own header to it
and sends it to the network.

Turbo Treck Real-Time TCP/IP User’s Manual

1.52

The Transport Control Protocol (TCP)
The first thing we need to remember is that TCP is a connection-oriented protocol.
This means that when the TCP protocol is used, both sides need send each other
some type of recognition that they have established a connection. This is different
from the earlier mentioned section describing such protocols as UDP, which is a
connectionless oriented protocol, where information is sent out without the need
for acknowledgement. Commonly, TCP is known to be a very reliable protocol
because of this fact.

Reliable Stream Delivery
Why do we need reliable stream delivery? To answer this question at the lowest
level, computer communication networks provide unreliable packet delivery. As
we have mentioned in previous sections, packets can be lost or destroyed when
transmission errors interfere with data, when network hardware fails, or when
networks become too heavily loaded. Networks that deliver packets dynamically,
such as UDP, can deliver them out of order, deliver them after a substantial delay,
or even deliver duplicates. Also, underlying network technologies may dictate
optimal packet size or invoke other constraints needed to achieve efficient transfer
rates.

At the highest level, application programs may need to send large volumes of data
from one computer to another. Using a connectionless delivery system for large
volume transfers can be tedious, and also requires programmers to incorporate
error detection and recovery into each application program. All these problems
and inconveniences have caused a necessity to find a general-purpose solution to
providing reliable stream delivery. This will make it possible for experts to build
a single instance of stream protocol software that all application programs use.
The advantage of this is to help isolate application programs from the details of
networking, and it also makes it possible to define a uniform interface for stream
transfer service.

Introduction to TCP/IP

1.53

Reliability
Reliable stream delivery service guarantees to deliver a stream of data from one
machine to another without duplication or loss. This statement brings up an
interesting question, “How can protocol software provide reliable transfer if the
underlying communication system offers only unreliable packet delivery?”

Most reliable protocols use a single fundamental technique known as positive
acknowledgement with retransmission. This technique requires a recipient to com-
municate with the source by sending an acknowledgement (ACK) message as it
receives data. The sender keeps the report of each packet it sends and then waits
for an acknowledgement before sending the next packet. The sender also starts a
timer when it sends a packet and retransmits a packet if the timer expires before a
packet arrives. The following diagram shows how the simplest positive
acknowledgement protocol transfers data.

Network Messages Events at Receiver SiteEvents at Sender Site

Send Packet 1

Receive Packet 1
Send ACK 1

Receive ACK 1
Send Packet 2

Receive Packet 2
Send ACK 2

Receive ACK 2

Network Packet Transmission

TI
M

E

TI
M

E

Fig. 1-37
Simple Positive Acknowledgement with Retransmission

The final reliability problem arises when an underlying packet delivery system
duplicates a packet. Duplicates can also arise when networks experience high
delays that cause premature retransmission. Solving duplication problems requires
careful consideration because both packets and acknowledgements can be
duplicated. Usually, reliable protocols can detect duplicate packets by assigning
each packet a sequence number and requiring the receiver to remember which
sequence numbers it has received. We will explore this further in an upcoming
section. To avoid confusion caused by delayed or duplicate acknowledgements,
positive acknowledgement protocols send sequence numbers back in
acknowledgements. Therefore, the receiver can correctly associate
acknowledgements with packets.

Turbo Treck Real-Time TCP/IP User’s Manual

1.54

Network Messages Events at Receiver SiteEvents at Sender Site

Send Packet 1

Packet Should Arrive
ACK Should Be Sent

ACK would normally
arrive at this time

Receive Packet 2
Send ACK 1

Receive ACK 1

Packet Lost

Start Timer

Retransmit Packet 1
Start Timer

Cancel Timer

Fig. 1-38
Packet Loss and Retransmission

Sliding Windows
As we continue in the explanation of the TCP protocol suite we need to examine
the concept of a sliding window. A sliding window enables stream transmission to
be efficient. To understand this concept, we need to keep in mind Figure 1-37.
It shows how a sender transmits a packet and waits for an acknowledgement from
the receiver before transmitting another. Also, we can gather from this illustration
that data only flows from one machine to another in one direction at any given
time, even if the network is capable of simultaneous communications in both
directions. The network will be completely idle during times the machines delay
responses, for example, when computing a checksum.

When dealing with a network with high transmission delays, we must remember
that a simple positive acknowledgement protocol wastes a substantial amount of
network bandwidth. This is because it must wait to send another packet until it
receives an acknowledgement for the original packet that was sent. The solution
to this problem is the Sliding Window Concept.

Introduction to TCP/IP

1.55

Sliding window protocols use network bandwidth more efficiently because they
allow the user to transmit multiple packets before waiting to receive an
acknowledgement. To illustrate this point, look at Figure 1-39. If we think of a
sequence of packets to be transmitted, the protocol places a small fixed-size window
on the sequence and transmits all packets that lie inside of that window.

Window Slides

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Intial Window

(1)

(2)

Fig. 1-39
Sliding Window Protocol

The first half of this illustration shows a sliding window protocol with an eight-
packet window. The second part of the illustration shows the window sliding, so
that packet 9 can be sent when an acknowledgement has been received for packet
1. Remember: Only unacknowledged packets are retransmitted.

When we say a packet is unacknowledged, it means the packet has been transmitted,
but no acknowledgement has been received. Technically, the number of packets
that can be unacknowledged at any given time is constrained to the window size
and is limited to a small fixed number. For example, as in our illustration, a window
that has the size of eight, the sender has permission to transmit 8 packets before it
receives an acknowledgement. Once the sender has received an acknowledgement
for the first packet, the window essentially “slides”, and sends the next packet.
The window continues to slide as long as acknowledgements are received.

Turbo Treck Real-Time TCP/IP User’s Manual

1.56

The performance of sliding window protocols depends on the window size and the
speed at which the network accepts packets. In our next illustration, you can see an
operation of a sliding window protocol when sending three packets. Note that the
sender transmits all the packets before receiving any acknowledgments.

With a window size of 1, a sliding window protocol is the same as our simple
positive acknowledgement protocol. By increasing our window size, it is possible
to eliminate network idle time completely. Simply put, the sender can transmit
packets as fast as the network can transfer them. We need to remember that a
finely tuned sliding window protocol keeps the network completely saturated with
packets

The timer is an important part of this protocol. By design, the sliding window
protocol remembers which packets have been acknowledged and keeps a separate
timer for each unacknowledged packet. If a packet is lost, the timer expires and
the sender retransmits that packet. When a sliding window slides, it moves past all
acknowledged packets. On the receiving end, the protocol software keeps its own
window, accepting and acknowledging packets as they arrive. Thus, the window
breaks the packets up into three sets: packets to the left of the window that have
been successfully transmitted, received and acknowledged, packets to the right of
the window that have not yet been sent, and packets that lie in the window that are
being transmitted.

Network Messages Events at Receiver SiteEvents at Sender Site

Send Packet 1

Send Packet 2

Send Packet 3

Receive Packet 1
Send ACK 1

Receive Packet 2
Send ACK 2

Receive Packet 3
Send ACK 3Receive ACK 1

Receive ACK 2

Receive ACK 3

Fig. 1-40
Three Packets Transmitted Using a Sliding Window Protocol

Introduction to TCP/IP

1.57

Transmission Control Protocol
Now that we have discussed and understand the sliding window principle, we can
look at the reliable stream service provided by the TCP/IP Internet protocol suite.
The service is defined by the Transmission Control Protocol or TCP. This reliable
stream service is so important that the entire protocol suite is referred to as TCP/IP.
It is important to remember that TCP is not a piece of software, it is a communication
protocol. People seem to encounter TCP software much more than they do the
communication protocol, so it is natural that to think of a particular implementation
as the standard

TCP is both a connection-oriented protocol, and a byte stream oriented protocol.
What this means is that TCP transmits a set of bytes at a time. These are called
TCP segments. Until now, we have discussed only packet-oriented delivery of
information. For example, if we were to make a call to the stack with two 100-byte
pieces of information, using TCP, it would send the information as a 200-byte
piece. Unlike other protocols, it does not break the information into packets, and
then send it. There is no packet delineation. By using this method, data transfer
can be likened to a modem connection. The method is essentially the same but the
commands we use are different. We use the connect function from the sender.
The receiver uses the listen function to receive incoming data.

TCP Header
We say that TCP is very reliable. The way TCP achieves reliability is in the format
of the header. As we mentioned earlier, the unit of transfer between two machines
using TCP software is called a segment. Segments are exchanged to establish
connections, to transfer data, to send acknowledgements, to advertise window sizes,
and to close connections. Let’s look at the format of a TCP segment including the
TCP header:

Source Port Destination Port
Sequence Numbers

Acknowledgement Number

HLEN Reserved Code Bits Window

Checksum Urgent Pointer
Options (If Any) Padding

Data
...

0 16 31

Fig. 1-41
Format of a TCP Segment Including the TCP Header

Turbo Treck Real-Time TCP/IP User’s Manual

1.58

Each segment is divided into two parts, a header followed by data. The header, also
called the TCP header, carries the expected identification and control information.
The Fields, SOURCE PORT and DESTINATION PORT contain the TCP port numbers
that identify application programs at the ends of the connection. The SEQUENCE
NUMBER field identifies the sender’s byte stream of data in the segment. The
ACKNOWLEDGEMENT NUMBER specifies the number of bytes the source expects
to receive next. The sequence number refers to the stream flowing in the same
direction as the segment while the acknowledgement field refers to the stream
flowing in the opposite direction. The following chart shows examples of currently
assigned port numbers:

Decimal Keyword
ECHO

DISCARD
FTP

TELNET

Description
Echo

Discard
File Transfer Protocol
Terminal Connection

7
9

21
23

Fig. 1-42
Example of Well Known Ports

The HLEN field contains an integer value that specifies the length of the segment
header in 32-bit multiples. It is needed because the OPTIONS field varies in length,
depending on which options have been included. The 6-bit field marked as
RESERVED is reserved for future use.

Some segments carry only acknowledgements while others carry data. Others
carry requests to establish or close a connection. TCP software uses the field
CODE BITS to determine the purpose and contents of the segment. These six bits
tell how to interpret other fields in the header according to the table in Figure 1-43.

Acknowledgement field is valid
This segment requests a push

Reset the connection
Sender has reached the end of its byte stream

Meaning if Bit is set to 1
Urgent pointer field is valid

ACK
PSH
SYN
FIN

Bit (Left to Right)
URG

Fig. 1-43
Components of the Code Bits Header Field

Introduction to TCP/IP

1.59

TCP software advertises how much data it is willing to accept every time it sends
a segment by specifying its buffer size in the WINDOW field. This field contains
a 16-bit integer in network standard byte order. Window advertisements accompany
all segments, including those carrying data, as well as those carrying only an
acknowledgement.

TCP/IP and Client/Server Relationships
The TCP/IP protocol stack is designed around the concept of client machines that
receive service from other machines on a network. For example, a personal
computer that accesses the Internet through a LAN (Local Area Network) gateway
relies on that gateway server to “talk TCP/IP” across the Internet on its behalf.

With that in mind, we can analyze the TCP/IP stack and find that each successively
higher layer is a client to the layer beneath it.

Application

Transport

Network

Data Link

Physical

Provides
Services

Provides
Services

Provides
Services

Provides
Services

Requests
Services

Requests
Services

Requests
Services

Requests
Services

Fig. 1-44
Client/Server Relationships in TCP/IP

IP is a client of the data link layer software. It uses that software’s services to
achieve its physical transmission of packets. UDP and TCP are clients of IP. They
use they use the IP routing mechanisms to move messages across a switched
network.

Turbo Treck Real-Time TCP/IP User’s Manual

1.60

Summary
Anything that depends on the transmission of data from one terminal to another
can efficiently use TCP/IP to get it there reliably. When ARPANET was established,
the need for reliable transmission was a must. By today’s standards, TCP/IP has
become the leading means of getting information from one place to another.

Introduction to BSD Sockets

2.1

Introduction to BSD Sockets

Turbo Treck Real-Time TCP/IP User’s Manual

2.2

Introduction to BSD Sockets

2.3

Intro to BSD Sockets
The Berkeley Sockets 4.4 API (Applications Programmer Interface) is a set of
standard function calls made available at the application level. These functions
allow programmers to include Internet communications capabilities in their
products.

The Berkeley Sockets API (also frequently referred to as simply ‘sockets’) was
originally released with 4.2BSD in 1983. Enhancements have continued through
the 4.4BSD systems. Berkeley-based code can be found in many different operating
systems, both commercial and public domain, such as BSD/OS, FreeBSD, NetBSD,
OpenBSD, and UnixWare 2.x. Other popular operating systems such as Solaris
and Linux employ the standard sockets interface, though the code was written
from scratch.

Other sockets APIs exist, though Berkeley Sockets is generally regarded as the
standard. Two of the most common APIs are Winsock and TLI. Winsock (Windows
Sockets) was developed for the Microsoft Windows platform in 1993, and is based
significantly on the BSD interface. A large subset of the BSD API is provided,
with most of the exceptions being platform-specific to BSD systems. TLI (Transport
Layer Interface) was developed by AT&T, and has the capability to access TCP/IP
and IPX/SPX transport layers. XTI (X/Open Transport Interface, developed by X/
Open Company Ltd.) is an extension of TLI that allows access to both TCP/IP and
NetBios.

Overview of How Sockets Works
BSD Sockets generally relies upon client/server architecture. For TCP
communications, one host listens for incoming connection requests. When a request
arrives, the server host will accept it, at which point data can be transferred between
the hosts. UDP is also allowed to establish a connection, though it is not required.
Data can simply be sent to or received from a host.

The Sockets API makes use of two mechanisms to deliver data to the application
level: ports and sockets. Ports and sockets are one of the most misunderstood
concepts in sockets programming.

All TCP/IP stacks have 65,536 ports for both TCP and UDP. There is a full
compliment of ports for UDP (numbered 0-65535) and another full compliment,
with the same numbering scheme, for TCP. The two sets do not overlap. Thus,
communication over both TCP and UDP can take place on port 15 (for example) at
the same time.

A port is not a physical interface – it is a concept that simplifies the concept of
Internet communications for humans. Upon receiving a packet, the protocol stack
directs it to the specific port. If there is no application listening on that port, the

Turbo Treck Real-Time TCP/IP User’s Manual

2.4

packet is discarded and an error may be returned to the sender. However, applications
can create sockets, which allow them to attach to a port. Once an application has
created a socket and bound it to a port, data destined to that port will be delivered
to the application. This is why the term socket is used – it is the connection
mechanism between the outside world (the ports) and the application.
A common misunderstanding is that sockets-based systems can only communicate
with other sockets-based systems. This is not true. TCP/IP or UDP/IP
communications are handled at the port level – the underlying protocols do not
care what mechanisms exist above the port. Any Internet host can communicate
with any other, be it Berkeley Sockets, WinSock, or anything else. Sockets is just
an API that allows the programmer to access Internet functionality – it does not
modify the manner in which communications occur.
Let us use the example of an office building to illustrate how sockets and ports
relate to each other. The building itself is analogous to an Internet host. Each office
represents a port, the receptionist is a socket, and the business itself is an application.
Suppose you are a visitor to this building, looking for a particular business. You
wander in, and get directed to the appropriate office. You enter the office, and
speak with the receptionist, who then relays your message to the business itself. If
there is nobody in the office, you leave.
To rephrase the above in sockets terminology: A packet is transmitted to a host. It
eventually gets to the correct port, at which point the socket conveys the packet’s
data to the application. If there is no socket at the destination port, the packet is
discarded.

Byte-Ordering Functions
Because TCP/IP has to be a universal standard, allowing communications between
any platforms, it is necessary to have a method of arranging information so that
big-endian and little-endian machines can understand each other. Thus, there are
functions that take the data you give them and return them in network byte-order.
On platforms where data is already correctly ordered, the functions do nothing and
are frequently macro’d into empty statements. Byte-ordering functions should
always be used as they do not impact performance on systems that are already
correctly ordered and they promote code portability.
The four byte-ordering functions are htons, htonl, ntohs, and ntohl. These stand
for host to network short, host to network long, network to host short, and network
to host long, respectively.
htons translates a short integer from host byte-order to network byte-order. htonl is
similar, translating a long integer. The other two functions do the reverse, translating
from network byte-order to host byte-order.

Introduction to BSD Sockets

2.5

Data Structures
Before venturing into the realm of actual API functions, one must understand a
few structures. The most important of these is sockaddr_in. It is defined as follows:

struct sockaddr_in
{
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

The structure in_addr that is used in sockaddr_in is
defined as:

struct in_addr
{
 u_long s_addr;

};

These are the most important data structures used in sockets. The second consists
of an unsigned long integer that contains the IP address that will be associated
with the socket. The first has two other important fields – sin_family and sin_port.
sin_family tells sockets which protocol family to use. For IPv4, the constant
AF_INET should always be passed in. sin_port tells what port number will be
associated with the socket.

sockaddr_in is a modification of the standard sockaddr
structure:

struct sockaddr
{
 u_char sa_len;
 u_char sa_family ;
 char sa_data[14] ;

};

Socket calls expect the standard sockaddr structure. However, for IPv4
communications, it is proper to pass in a sockaddr_in structure that has been cast
to a sockaddr.

Turbo Treck Real-Time TCP/IP User’s Manual

2.6

Common Sockets Calls
This section lists the most commonly used socket calls and describes their uses.
This is purely introductory material. For a more complete description of how the
calls work, please see the Programmer’s Reference section of this manual.

socket
A socket, in the simplest sense, is a data structure used by the Sockets API. When
the user calls this function, it creates a socket and returns reference a number for
that socket. That reference number, in turn, must be used in future calls.

bind
This call allows a user to associate a socket with a particular local port and IP
address. In the case of a server (see listen and accept below), it allows the user to
specify which port and IP address incoming connections must be addressed to.
For outgoing connection requests (see connect below), it allows the user to specify
which port the connection will come from when viewed by the other host. Note:
bind is unnecessary for sockets that are not going to be set up to accept incoming
connections. In this case, the stack will pick an appropriate IP address and a random
port (known as an ethereal port).

listen
This function prepares the given socket to accept incoming TCP requests. It must
be called before accept.

accept
This function detects incoming connection requests on the listening socket.
In blocking mode, this call will cause a task to sleep until a connection request is
received. In non-blocking mode, this call will return TM_EWOULDBLOCK
indicating that no connection request is present and that accept must be called
again. If the user calls accept and a connection request is pending, accept creates
another socket based on the properties of the listening socket. If the call is successful,
the socket descriptor of the newly created and connected socket is returned. The
new socket is created to allow communications with multiple clients from a single
port on the server (think of web servers, which listen on port 80 by default and are
capable of communicating with thousands of hosts at the same time). Each time
the user calls accept and there is a connection requests pending, it creates a new
socket.

Introduction to BSD Sockets

2.7

connect
When a user issues a connect command, the stack creates a connection with another
host. Before connect can instruct the stack to establish a connection, the user must
pass a socket and a sockaddr_in structure containing the destination IP address
and port. In TCP, an actual connection is negotiated. In UDP, however, no packets
are exchanged.

send
This call allows a user to send data over a connected socket. Unlike sendto, this
socket must be connected. Because the socket is already connected, it is not
necessary to specify the destination address (the destination address was set in
accept or connect). send can be used for either UDP or TCP data.

sendto
Unlike send, sendto requires users to specify the destination port and address.
This is useful for UDP communications only, as TCP requires a pre-existing
connection. sendto may be used on either connected or unconnected UDP sockets.
In the case that a UDP socket is already connected, the destination address provided
to sendto will override the default established on the socket with connect.

recv
This function allows the user to receive data on the connected socket. recv can be
used for either TCP or UDP.

recvfrom
This function allows the user to receive data from a specified UDP socket (whether
or not it is connected). It may not be used for TCP sockets, as they require a
connection.

close
This function closes (read: deletes) a socket that has been allocated with the socket
call. If the socket is connected, it closes the connection before deleting it. Because
the close call is frequently used for more than one purpose (closing open files, for
example), it is renamed tfClose in the Turbo Treck stack to avoid conflicts with
the preexisting function.

Turbo Treck Real-Time TCP/IP User’s Manual

2.8

Example Code
The following are simplified examples of using the Sockets API to create Internet
connectivity in an application. They are all available on the Turbo Treck protocols
CD, in the examples\ directory. Four examples are given: UDP Client, UDP Server,
TCP Client, and TCP Server. All of the examples are coded in blocking-mode.

UDP Client
This first example shows how to code a UDP client. A socket is created, and sendto
is called the specified number of times. Note that bind is never called. For outgoing
connections, bind is not necessary, as the stack will pick a random port and an
appropriate IP address.

#include <trsocket.h>

#define TM_BUF_SIZE 1400
#define TM_PACKETS_TO_SEND 10
#define TM_DEST_ADDR “10.0.0.1”
#define TM_DEST_PORT 9999

char testBuffer[TM_BUF_SIZE];
char * errorStr;

int udpClient(void)
{
 int testSocket;
 unsigned int counter;
 struct sockaddr_in destAddr;
 int errorCode;
 int returnVal;

 counter = 0;
 returnVal = 0;

/* Specify the address family */
 destAddr.sin_family = AF_INET;
/* Specify the destination port */
 destAddr.sin_port = htons(TM_DEST_PORT);
/* Specify the destination IP address */
 destAddr.sin_addr.s_addr = inet_addr(TM_DEST_ADDR);
/* Create a socket */
 testSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

/*
* Verify the socket was created correctly. If not, return
* immediately

 */
 if (testSocket == TM_SOCKET_ERROR)
 {
 returnVal = tfGetSocketError(testSocket);
 errorStr = tfStrError(returnVal);
 goto udpClientEnd;
 }

Introduction to BSD Sockets

2.9

/* While we haven’t yet sent enough packets... */
 while (counter < TM_PACKETS_TO_SEND)
 {
/* Send another packet to the destination specified above */
 errorCode = sendto(testSocket,
 testBuffer,
 TM_BUF_SIZE,
 0,
 &destAddr,
 sizeof(destAddr));

/*
* Check if there was an error while sending. If so, break from the
* loop
*/

 if (errorCode < 0)
 {
 returnVal = tfGetSocketError(testSocket);
 errorStr = tfStrError(returnVal);
 break;
 }

/* Increment the number of packets sent by 1 */
 counter++;

 }

udpClientEnd:
/* Make sure the socket exists before we close it */
 if (testSocket != -1)
 {
/* Close the socket */
 tfClose(testSocket);
 }

 return(returnVal);

}

Turbo Treck Real-Time TCP/IP User’s Manual

2.10

UDP Server
This code is a very simple UDP server. It creates a socket, binds it to the desired
port (it is not necessary to supply an IP address… the stack will pick one. This is
very useful for making code portable), and then receives data. Upon receipt of the
data, the sourceAddr structure is filled out with the originating IP Address and
port of the incoming packet.

#include <trsocket.h>

#define TM_BUF_SIZE 1500
#define TM_DEST_PORT 9999

char testBuffer[TM_BUF_SIZE];
char * errorStr;

int udpServer(void)
{
 int testSocket;
 struct sockaddr_in sourceAddr;
 struct sockaddr_in destAddr;
 int errorCode;
 int addrLen;
 int returnVal;

 returnVal = 0;

/* Specify the address family */
 destAddr.sin_family = AF_INET;
/*
* Specify the dest port (this being the server, the destination
* port is the one we’ll bind to)

 */
 destAddr.sin_port = htons(TM_DEST_PORT);
/*
* Specify the destination IP address (our IP address). Setting
* this value to 0 tells the stack that we don’t care what IP
* address we use - it should pick one. For systems with one IP
* address, this is the easiest approach.

 */
 destAddr.sin_addr.s_addr = 0;

/*
* The third value is the specific protocol we wish to use. We pass
* in a 0 because the stack is capable of figuring out which
* protocol to used based on the second parameter (SOCK_DGRAM =
* UDP, SOCK_STREAM = TCP)

 */
 testSocket = socket(AF_INET, SOCK_DGRAM, 0);

/* Make sure the socket was created successfully */
 if (testSocket == TM_SOCKET_ERROR)
 {
 returnVal = tfGetSocketError(testSocket);
 errorStr = tfStrError(returnVal);

Introduction to BSD Sockets

2.11

 goto udpServerEnd;
 }

/*
* Bind the socket to the port and address at which we wish to
* receive data
*/

 errorCode = bind(testSocket, &destAddr, sizeof(destAddr));

/* Check for an error in bind */
 if (errorCode < 0)
 {
 returnVal = tfGetSocketError(testSocket);
 errorStr = tfStrError(returnVal);
 goto udpServerEnd;
 }
 /* Do this forever... */
 while (1)
 {
/* Get the size of the sockaddr_in structure */
 addrLen = sizeof(sourceAddr);
 /*
 * Receive data. The values passed in are:
 * We receive said data on testSocket.
 * The data is stored in testBuffer.
 * We can receive up to TM_BUF_SIZE bytes.
 * There are no flags we care to set.
 * Store the IP address/port the data came from in sourceAddr
* Store the length of the data stored in sourceAddr in addrLen.
*The length that addrLen is set to when it’s passed in is
*used to make sure the stack doesn’t write more bytes to
*sourceAddr than it should.

 */
 errorCode = recvfrom(testSocket,
 testBuffer,
 TM_BUF_SIZE,
 0,
 &sourceAddr,
 &addrLen);
/* Make sure there wasn’t an error in recvfrom */
 if (errorCode < 0)
 {
 returnVal = tfGetSocketError(testSocket);
 errorStr = tfStrError(returnVal);
 break;
 }
 }
udpServerEnd:
/* Make sure we have an actual socket before we try to close it */
 if (testSocket != -1)
 {
/* Close the socket */
 tfClose(testSocket);
 }
 return(returnVal);
}

Turbo Treck Real-Time TCP/IP User’s Manual

2.12

TCP Client
This code is very much like the UDP client. Unlike UDP, however, it must call
connect before actually transferring data, as TCP requires a negotiated connection.
It then calls send the specified number of times. An interesting observation is that
the number of TCP data packets actually sent out on the wire will very probably
not equal the number defined in this code. TCP is stream-based rather than datagram
based, so it will buffer data and attempt to send it in the most convenient size
packets (generally, maximum sized packets).

#include <trsocket.h>

#define TM_BUF_SIZE 1400
#define TM_PACKETS_TO_SEND 10
#define TM_DEST_ADDR “10.129.36.52”
#define TM_DEST_PORT 9999

char testBuffer[TM_BUF_SIZE];
char * errorStr;

int tcpClient(void)
{
 int testSocket;
 unsigned int counter;
 struct sockaddr_in destAddr;
 int errorCode;
 int sockOption;
 int returnVal;

 returnVal = 0;
 counter = 0;

/* Specify the address family */
 destAddr.sin_family = AF_INET;
/* Specify the destination port */
 destAddr.sin_port = htons(TM_DEST_PORT);
/* Specify the destination IP address */
 destAddr.sin_addr.s_addr = inet_addr(TM_DEST_ADDR);

/* Create a socket */
 testSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
/*
* Verify the socket was created correctly. If not, return
* immediately
*/

 if (testSocket == TM_SOCKET_ERROR)
 {
 returnVal = tfGetSocketError(testSocket);
 errorStr = tfStrError(returnVal);
 goto tcpClientEnd;
 }

Introduction to BSD Sockets

2.13

/* Connect to the server */
 errorCode = connect(testSocket, &destAddr, sizeof(destAddr));
/* Verify that we connected correctly */
 if (errorCode < 0)
 {
 returnVal = tfGetSocketError(testSocket);
 errorStr = tfStrError(returnVal);
 goto tcpClientEnd;
 }

/* While we haven’t yet sent enough packets... */
 while (counter < TM_PACKETS_TO_SEND)
 {
/* Send another packet to the destination specified above */
 errorCode = send(testSocket,
 testBuffer,
 TM_BUF_SIZE,
 0);

/*
* Check if there was an error while sending. If so, break from the
* loop
*/

 if (errorCode < 0)
 {
 returnVal = tfGetSocketError(testSocket);
 errorStr = tfStrError(returnVal);
 break;
 }

/* Increment the number of packets sent by 1 */
 counter++;

 }

tcpClientEnd:
/* Make sure we have a socket before closing it */
 if (testSocket != -1)
 {
/* Close the socket */
 tfClose(testSocket);
 }

 return(returnVal);
}

Turbo Treck Real-Time TCP/IP User’s Manual

2.14

TCP Server
This is the most complicated of the examples. It creates a socket, binds that socket
to a port, and configures it as a listening socket. This allows it to receive incoming
connections. It then calls accept, which will block until an incoming connection
request is received. When accept returns, the sourceAddr structure will have been
filled out with the originating IP Address and port of the incoming connection
request. accept creates a new socket, which is then used to receive data until the
connection is closed by the other side. When this happens, the application goes
back to waiting for an incoming connection request.

#include <trsocket.h>

#define TM_BUF_SIZE 1400
#define TM_DEST_PORT 9999

char testBuffer[TM_BUF_SIZE];
char * strError;

int tcpServer(void)
{
 int listenSocket;
 int newSocket;
 struct sockaddr_in sourceAddr;
 struct sockaddr_in destAddr;
 int errorCode;
 int addrLen;
 int returnVal;

 returnVal = 0;

/* Specify the address family */
 destAddr.sin_family = AF_INET;
/*
* Specify the dest port (this being the server, the destination
* port is the one we’ll bind to

 */
 destAddr.sin_port = htons(TM_DEST_PORT);
/*
* Specify the destination IP address (our IP address). Setting
* this value to 0 tells the stack that we don’t care what IP
* address we use - it should pick one. For systems with one IP
* address, this is the easiest approach.

 */
 destAddr.sin_addr.s_addr = inet_addr(0);

/* Create a socket */
 listenSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

/* Make sure the socket was created successfully */
 if (listenSocket == TM_SOCKET_ERROR)
 {
 returnVal = tfGetSocketError(listenSocket);
 errorStr = tfStrError(returnVal);

Introduction to BSD Sockets

2.15

 goto tcpServerEnd;
 }

/*
 * Bind the socket to the port and address at which we wish to
* receive data
*/

 errorCode = bind(listenSocket, &destAddr, sizeof(destAddr);

/* Check for an error in bind */
 if (errorCode < 0)
 {
 returnVal = tfGetSocketError(listenSocket);
 errorStr = tfStrError(returnVal);
 goto tcpServerEnd;
 }

/* Set up the socket as a listening socket */
 errorCode = listen(listenSocket, 10);

/* Check for an error in listen */
 if (errorCode < 0)
 {
 returnVal = tfGetSocketError(listenSocket);
 errorStr = tfStrError(returnVal);
 goto tcpServerEnd;
 }

/* Do this forever... */
 while (1)
 {
/* Get the size of the sockaddr_in structure */
 addrLen = sizeof(sourceAddr);

/*
* Accept an incoming connection request. The address/port info for
* the connection’s source is stored in sourceAddr. The length of
* the data written to sourceAddr is stored in addrLen. The
* initial value of addrLen is checked to make sure too many
* bytes are not written to sourceAddr

 */
 newSocket = accept(listenSocket, &sourceAddr, &addrLen);

/* Check for an error in accept */
 if (newSocket < 0)
 {
 returnVal = tfGetSocketError(listenSocket);
 errorStr = tfStrError(returnVal);
 goto tcpServerEnd;
 }

/* Do this forever... */
 while (1)
 {

Turbo Treck Real-Time TCP/IP User’s Manual

2.16

/* Receive data on the new socket created by accept */
 errorCode = recv(newSocket,
 testBuffer,
 TM_BUF_SIZE,
 0);

/* Make sure there wasn’t an error */
 if (errorCode < 0)
 {
 tfClose(newSocket);
 returnVal = tfGetSocketError(newSocket);
 errorStr = tfStrError(returnVal);
 goto tcpServerEnd;
 }
/*
* Receiving 0 bytes of data means the connection has been closed.
* If this happens, close the new socket and break out of this
* (the inner) loop.
*/

 if (errorCode == 0)
 {
 tfClose(newSocket);
 break;
 }
 }
 }

tcpServerEnd:
/* Make sure there’s a socket there before closing it */
 if (listenSocket != -1);
 {
/* Close the listening socket */
 tfClose(listenSocket);
 }

 return(returnVal);
}

Turbo Treck Systems

3.1

Turbo Treck Systems

Turbo Treck Real-Time TCP/IP User’s Manual

3.2

Turbo Treck Systems

3.3

Turbo Treck Real-Time TCP/IP Systems
Turbo Treck TCP/IP is designed to be easy to integrate into your environment. It is
also designed to be scalable to your needs. In other words it is designed to allow
you to use as much or as little of Turbo Treck TCP/IP as you need. For example, if
you decide to make an int type 16 bits, you can use up to 32000 sockets with very
little penalty in performance. When using the Turbo Treck TCP/IP system we want
you to think of it as a “Black Box”. We believe that there should be no reason for
you as an integrator to be intimately familiar with the internals of Turbo Treck
TCP/IP. We have designed a series of API’s that you can use to hook Turbo Treck
to any environment. These API’s include a kernel interface, timer interface, driver
interface, sockets interface, and miscellaneous API’s to allow you to configure
Turbo Treck TCP/IP to your environment. Built inside of Turbo Treck is a locking
system, buffer system, and timer system. These different systems are described in
this chapter so that you know how Turbo Treck uses the API’s that are described in
the next two chapters. You will also need to know what the requirements are to
integrate Turbo Treck Real-Time TCP/IP into your environment.

Locking System
Turbo Treck Real-Time TCP/IP can be used in many different models. You do not
need an operating system in order to use Turbo Treck in your environment.
However, if you have an operating system, we will of course use that operating
system to allow us to work best for you. Operating systems seem to come in two
different types. The simplest operating system is a non-preemptive operating system.
The most common variety of an operating system is a preemptive operating system.
The difference between the two types is crucial when you decide to integrate Turbo
Treck Real-Time TCP/IP into your environment. Preemption is when a task is
interrupted by another task of higher priority, or when a fixed time interval has
occurred. With a non-preemptive operating system, the user does not need to set
up any critical sections. A critical section is a section of code that is protected
from preemption by disabling interrupts while working on a shared data area or a
shared resource. Since a non-preemptive operating system is by definition non-
preemptive, we do not require that protection in this environment. If you have
other real-time needs, this may not be the operating system for you.

Turbo Treck Real-Time TCP/IP User’s Manual

3.4

In a preemptive operating system environment, we do need to concern ourselves
with the possibility that we may be preempted or swapped out by another task or
interrupt service routine (ISR). In embedded environments we cannot have long
critical sections, otherwise this would inhibit our ability to operate in real time.
This is what our locking system is concerned with. With our locking system, we
are able to protect a section of code over long periods of time without having the
interrupts disabled on the system for long periods of time.

With networking it is impossible to achieve 100 percent re-entrancy of the code
without locking. An example of this would be an application task trying to receive
data at the same time as a higher priority task is trying to store data in the receive
queue. We are forced to protect the application task while it is updating its pointers
to the receive queue, otherwise the user may be returned a corrupt pointer or even
worse the corrupt pointer is put into the socket entry. For a non-preemptive operating
system this is never an issue because each task is operating at the same priority.
One task completes everything it needs to before another task is swapped in.

Another important item to consider when operating in embedded environments is
that care must be taken with how we call a networking stack from an interrupt
service routine. If we were to receive a packet inside of an interrupt service routine
and pass that packet to the networking stack, it is possible that the packet may
generate a response to the network. This would increase the time that we stay
inside of our interrupt service routine. Most embedded systems have a requirement
that the interrupt service routine time is kept to a minimum. You will find with the
Turbo Treck TCP/IP, a very small set of function calls are supported within an
interrupt service routine. These calls are limited in the amount of work that they
do. One of these would be to update the timer. However, this is not a recommended
method for updating the timer system. We would in fact prefer that the update and
execute of the timer system be done in either a main line loop or a separate timer
task. Another call from an ISR that is supported is notification of a send complete
or a received packet. Note that we do not support passing a packet back to the
stack from an ISR. All we do is notify the stack that a packet has been received by
the network hardware.

As we can see from what we have discussed thus far, we only need the locking
system when we are using Turbo Treck with a preemptive operating system and we
are using Turbo Treck as a shared library in this environment. What we have done
with the locking system is to use the most atomic feature found in most embedded
operating systems to achieve single threaded access to a data area. We use a counting
semaphore to guarantee that only one thread or task of a system can access certain
shared data areas at one time. By using a counting semaphore we allow the operating
system to properly context switch to a higher priority task at the end of the locked
section.

Turbo Treck Systems

3.5

In our Turbo Treck TCP/IP we use many different locks. By operating in this
fashion we avoid stopping other tasks that have no interest in our protected data
area. If there is no contention for the same data area, tasks will still operate without
blocking. We do not call the operating system unless there is contention for a
shared data area.

There is a large difference between a critical section and locking in Turbo Treck
TCP/IP. A critical section is used to protect a shared data area in a very small
amount of code. This code is typically less than five assembly instructions in most
instances. On the other hand, a lock is used to protect a shared data area or resource
from reentrancy for longer periods. This shared data area could be a socket entry,
routing entry, or ARP entry. Even with locks we attempt to keep the time as short
as possible to avoid having contention for the shared data area or resource. Counting
semaphores are also used to allow us to wait for a resource to become available,
such as received data. When we the call socket function recv and we are allowing
blocking to occur, if there is no data to receive, we will pend on a counting
semaphore until there is data for us to receive or the socket has been closed.

Blocking means that we will wait until some event has occurred that we want to
happen. A task that is blocked will allow other tasks to still run. By default,
Sockets operate in blocking mode. In order to achieve blocking when it needs to
occur, we rely on a counting semaphore. By using counting semaphores for blocking,
we do not need to call the operating system in a critical section. This is extremely
important for embedded systems. In fact, some operating systems will not allow
you to call them inside of a critical section. If we did not use a counting semaphore,
then there could be a window of opportunity where a task never exits the blocking
state should the event that we are waiting for occurred during that small window.

Most operating systems have the concept of a counting semaphore. Not all operating
systems offer a counting semaphore. If your RTOS does not provide a counting
semaphore, but does have an event flag, then use the counting semaphore
implementation in kernel\trcousem.c.

A counting semaphore is a mechanism that allows you to wait for a resource
indefinitely. It also allows you to release the resource before you actually wait.
If the event occurs before you wait, your task will not wait for the resource.
This mechanism is very important to the operation of Turbo Treck TCP/IP.
Protocol stacks need this mechanism in order to work in an asynchronous mode
properly. Now there is another question that you must be asking yourself “Do I
actually need a counting semaphore?” The answer is simple. If you are not using
a preemptive operating system, and you do not make any blocking calls, then you
do not need a counting semaphore. We only use the counting semaphore for
blocking and locking.

Turbo Treck Real-Time TCP/IP User’s Manual

3.6

Turbo Treck TCP/IP calls
tfKernelCreateSemaphore RTOS/Kernel

Create Semaphore

Semaphore Support

RTOS/Kernel

Semaphore Support

Task 1:
Calls a function that
attempts to lock a resource
that is already locked

Turbo Treck TCP/IP calls
tfKernelPend

RTOS/Kernel

Semaphore Support

Task 2:
Finishes with the locked
resource

Turbo Treck calls
tfKernelPost

Task 1:
Continues to run
getting the lock

Post on Semaphore

Figure 3-1
RTOS allows Task 1 to Continue

Turbo Treck Systems

3.7

Buffer System
In Turbo Treck TCP/IP we have an internal buffer management system for
performance reasons. We have found that if we need to call the operating system
every time that we need a buffer and again have to call the operating system in
order to free that buffer, there is a severe penalty on performance. What we do
with Turbo Treck TCP/IP is allow the system to dynamically allocate memory as
needed. This means the memory pool may grow over time. After Turbo Treck
TCP/IP is used actively over a period of about one-minute, the maximum pool that
Turbo Treck TCP/IP will be using is already allocated from the operating system.

The pool that Turbo Treck is using will only grow as more performance demands
are placed on the networking system. By allocating buffers in this fashion,
Turbo Treck eliminates the guesswork that is involved in trying to setup a system.

We allow the protocol stack to only use the memory that is required for your
performance demands. You do not need to set aside an area of memory of a fixed
size. We have found that if you are forced to set aside a fixed size memory block
that will be used by the TCP/IP stack to dynamically allocate memory from, you
will be forced to set aside more memory than you will use in order to prevent “out
of memory” errors from occurring. We dynamically allocate almost all of our data
structures. This is done to keep the static memory area as small as possible. Also
by doing this, we allow you to change the configuration of the protocol stack
without recompiling.

By this time you must be asking yourself the question “So, how much RAM will I
use?” We have found that a single TCP socket implementation with a small number
of receive buffers will use less than 20k bytes of RAM when the highest performance
demands are placed upon the protocol stack. The amount of RAM used in your
system will depend on many different factors. These factors include the size of
your sockets send queue and receive queue as well as the number of pre-allocated
receive buffers for the device. Most of the RAM is used for your data. The
internal data structures are very small. For example: a single UDP socket entry
requires less than 200 bytes for the internal data structures. If we are using TCP
on a socket, then the internal data structure grows to less than 400 bytes. A socket
entry is only allocated between the socket call and the close call. This means that
the socket data structures are not in use when the socket is not active. This allows
you to have a high number of sockets defined on a system and use a small amount
of RAM while they are not in use. Maximum RAM usage is also dependent on
the maximum number of concurrent sockets that you have open at any given time.
The interface to your operating system or “C” compiler from the buffer system is
a simple malloc and free call.

Turbo Treck Real-Time TCP/IP User’s Manual

3.8

Timer System
The timer system is the most simple of the systems to understand. We need a fixed
time interval notification into the protocol stack. This is very similar to the crystal
that is attached to your microprocessor. We use this fixed time notification to let us
know how much time has elapsed. This is very important for a protocol stack. We
must know how long a TCP packet takes to get to a remote system. We must also
know how much time an ARP entry has been in the ARP queue. In addition, the
timer system also measures routing entries and is used for Turbo Treck PPP.

You don’t deal with all of the individual timers that Turbo Treck TCP/IP manages.
Since we only use a single notification to let us know how much time is elapsed,
the timer system will manage all of the different timers used by the Turbo Treck
TCP/IP system.

Turbo Treck TCP/IP is flexible in the way that you provide this notification.
You have the option of using an ISR or a task to do the timer notification.
The notification is done in a single function call. You can then decide when you
wish to execute the timers. The execution of the timers is done with a single function
call as well. Many users elect to have a simple task under their operating system
that will both update the timers (this is the notification), and execute the timers.
After performing both of these functions, the timer task will wait for a fixed amount
of time before looping back to the update. If you do not have an embedded operating
system then you may opt to update the timers from an ISR and execute them from
a main line loop.

Integrating into Your Environment

4.1

Integrating Turbo Treck Real-Time
Protocols Into Your Environment

Treck Real-Time TCP/IP User’s Manual

4.2

Integrating into Your Environment

4.3

Integrating Turbo Treck Real-Time
Protocols Into Your Environment
Now that you have a basic understanding of TCP/IP and the Turbo Treck Systems,
you are probably wondering how to integrate Turbo Treck protocols into your
system. You have looked at the product and discovered there are many files and
API’s that you may have to deal with. To aid you in your integration effort, we will
break this task down into several key elements:

1) Deciding how you will use the protocols in your system
2) Setting up the TRSYSTEM.H file for various compile time switches
3) Creating the Build Command (.BAT) files for a DOS Environment and Building

the Library
4) Creating an RTOS Interface
5) Hooking in the Timer
6) Key things you need to do in order to start using Turbo Treck protocols
7) Testing the new library with a simple loop-back test
8) Using Ethernet or PPP
9) Adding a new device driver
10) Testing your new device driver

If we have some or all of these elements setup for you, you will (of course) be able
to skip some of these steps. In our design, we have made every effort to help the
integration process be as simple as possible.

TIP: Don’t be overwhelmed by what looks like a lot of work for you to do.
Most of these steps can be performed in one or two days. You will find that you
will spend most of your time in the place where the hardware meets the
software (the device driver). Just go through these steps and take them one at
a time and you will have the integration completed before you know it.

Treck Real-Time TCP/IP User’s Manual

4.4

Step 1- Determining How to Use the Protocols
in Your System

To help in making this decision, you will need to ask yourself a few questions.

Am I using a Real-Time Operating System (RTOS)?

Is my processor Big or Little Endian?

I do not have an RTOS/Kernel to Interface to
If you do not have an RTOS/Kernel to which to interface, you will still need a
minimum RTOS interface (which we provide). If you decide not to use an RTOS,
then remember that most of the calls into the Turbo Treck Protocol Stack will be
done from a main line loop. The biggest disadvantage in not using an RTOS is that
you cannot make blocking calls (i.e. make recv () wait for data), otherwise you will
stop all processing in your system. Another disadvantage is that you cannot
prioritize events. If you are thinking about this, but are still undecided, we suggest
that you look at using uC/OS as your RTOS. This is included with the base Turbo
Treck protocols. If you are dead set against using an RTOS, then we will help you
understand the limitations in the Kernel configuration section of this chapter.

I have a RTOS/Kernel to Interface to, but it does not allow any blocking/pending
calls
An example of this would be an event scheduler with all the calls made from a main
loop. This falls into the “I do not have an RTOS/Kernel to interface to” category.

I have a RTOS/Kernel to Interface to
You will need to decide if your RTOS is preemptive or non-preemptive. If you do
not know, you can always assume preemptive (which is the safest). Preemptive
RTOS/Kernels need to have locking of shared resources.

TIP: A Preemptive operating system is one where a timer tick or other event
causes a context switch to a new task. Tasks may have different priorities. Higher
priority tasks may interrupt lower priority tasks.

A non-preemptive operating system is one where all tasks have the same priority,
run in a round robin fashion, and explicitly give up the CPU through an RTOS
call. This is usually called a “Round Robin Scheduler”

Next, you will need to decide how you are going to use Turbo Treck Real-Time TCP/
IP with your RTOS.
Do you want to have Turbo Treck run as its own task or in the context of other
tasks as a shared library?

Integrating into Your Environment

4.5

This choice depends on how you want your system to run. Most embedded
systems choose to use the protocol stack as a shared library because it gives you
the most flexibility on how you want to prioritize the different processes in using a
protocol stack. If you decide to use Turbo Treck protocols as a single task, then
there is also the performance hit of having a thin layer between the application and
the protocol stack. Most people, who want to have a separate task, decide to do it
to maintain modularity of the protocol stack. In doing so, they allow the protocol
stack to be a “plug-in” to an existing application.

Application
Task
(1)

FTP Client

Application
Task
(2)

Web Server

Application
Task
(3)

Ping

Turbo Treck/RTOS
Shared Library
Device Driver

Fig. 4-1
 Example of Using Turbo Treck Protocols as a Shared Library

Treck Real-Time TCP/IP User’s Manual

4.6

Step 2 - Setting TRSYSTEM.H for Various
Compile Time Switches
The TRSYSTEM.H file is used to configure the compile time switches for the Turbo
Treck protocol stack. It should be considered the master configuration file. In this
file, you will find macros to define things such as optimization, endian, and defaults
for run time parameters used by the protocol stack. You may find that you do not
need to modify this file if your environment is already defined in the TRSYSTEM.H
file. When you are integrating to your hardware platform and hooking the protocol
stack up to your kernel, this will be the only file that you need modify. If you
decide to turn on macros that are defined in this file, you can do it at the top of the
file. The following are options that you may decide to turn on or off:

Performance Macros
TM_BYPASS_ETHER_LL
This performance macro is used to “in-line” the Ethernet processing. When this
macro is enabled, it allows us to process Ethernet packets much faster than
sending them to a separate link layer. The disadvantage to using this macro is
that it costs a little more code space to do the Ethernet processing. If you are not
using Ethernet, then you do not want to have this macro defined.

TM_IP_FRAGMENT
If this macro definition is removed from trsystem.h, the IP fragmentation and re-
assembly code is not compiled in. If you expect to send IP fragments, or receive
IP fragments, you need to keep this macro in trsystem.h. Otherwise, you can
remove the TM_IP_FRAGMENT macro from trsystem.h, thereby reducing code
size.

TM_IP_FRAGMENT_NO_COPY
If you define TM_IP_FRAGMENT and your device driver supports scattered
send, then define TM_IP_FRAGMENT_NO_COPY to avoid an extra internal
data copy when IP datagrams need to be fragmented.

TM_DISABLE_PMTU_DISC
By default, the TCP Path MTU Discovery code is compiled in and turned on.
Adding this macro will prevent the compilation of the TCP Path MTU Discovery
code, thereby reducing code size.

TM_DISABLE_TCP_SACK
By default, the TCP Selective Acknowledgement code is compiled in and turned on.
Adding this macro will prevent the compilation of the TCP Selective
Acknowledgement code, thereby reducing code size.

TM_USE_TCP_PACKET
Uncomment the TM_USE_TCP_PACKET macro if you wish to enable code that
modifies TCP behavior and forces TCP to send data on user send packet
boundaries. Note that this will only enable the code. You must also set the

Integrating into Your Environment

4.7

TM_TCP_PACKET option at the IPPROTO_TCP level as described in the
setsockopt API page. Warning! Uncommenting this macro will make TCP less
efficient and will disable Path MTU discovery and TCP Selective
Acknowledgements.

TM_DISABLE_DYNAMIC_MEMORY
By default, when the Turbo Treck stack allocates blocks of memory of size less than
4096 bytes, it keeps them in its internal buffer management system, when they are
freed, instead of releasing them to the heap. Adding this macro will prevent the
compilation of the Turbo Treck internal buffer management system code, thereby
reducing code size. However, this is not recommended, as this will reduce
performance, since this will force the Turbo Treck stack to call the Operating system
every time it needs to allocate or free a block of memory. If the user has not disabled
the Turbo Treck Dynamic Memory (i.e. not defined this macro), then the user can
free all the unused dynamic memory held by the Turbo Treck stack at any time, by
calling the API tfFreeDynamicMemory.

TM_ARP_UPDATE_ON_RECV
Uncomment the TM_ARP_UPDATE_ON_RECV macro, if you want the stack to
update the ARP cache for every packet that is being received. This will prevent
the ARP cache entry from timing out, and will prevent the stack from having to
send an ARP request every 10 minutes, but at the cost of code size, and speed,
since every incoming packet needs to be checked, and the ARP entry updated
then.

TM_OPTIMIZE_SPEED
This performance macro is used to optimize the code in favor of speed over size.
When using this macro you will notice that the code is much larger than without it.
However, you will see a noticeable increase in speed. Typically, this macro is used
to in-line functions that are used repeatedly.

TM_OPTIMIZE_SIZE
This macro is used to optimize the code in favor of size over speed. When using this
macro you will get the smallest code size available. You will notice that the
performance of the system is degraded when you use this macro. This macro is to
be used when the performance of the system does not matter but code size does.

TM_ERROR_CHECKING
This macro is used to turn on error checking for the protocol stack. It is used for
debugging purposes; it is not intended for use in your released product. The error
checking will send messages to the functions tfKernelError and tfKernelWarning
for you to log. There is a performance and size impact when using this macro.

TM_THREAD_STOP
Thread stop is used to stop a thread, which has had an unrecoverable error. By
default, it is defined as a forever loop. You can define this macro to supersede the
default definition.

Treck Real-Time TCP/IP User’s Manual

4.8

TM_PROTO_EXTERN
By default the prototypes declared in the Turbo Treck header files are not declared
extern. If your linker dictates that they should be declared extern, then add the
following macro:#define TM_PROTO_EXTERN extern.

TM_LOOP_TO_DRIVER
If this macro definition is added to trsystem.h, it will allow the user to loop back
application data all the way to the device driver when sending to an interface
configured IP address. By default, this macro is not defined in trsystem.h, and
this causes the Treck TCP/IP stack to loop back application data above the link
layer when the user is sending to an interface configured IP address. This is
useful when debugging a device driver, or link layer.

TM_USE_DRV_ONE_SCAT_SEND
This macro is commented out by default.
 Define the TM_USE_DRV_ONE_SCAT_SEND macro if you wish to use a single
call to the device driver, passing the packet handle, even when sending a frame
with scattered buffers. Note: to enable this feature, this macro must be added and
tfUseInterfaceOneScatSend must be called on the interface that supports it.

TM_USE_DRV_SCAT_RECV
This macro is commented out by default.
Define the TM_USE_DRV_SCAT_RECV macro, if you want to allow the device
driver recv function to pass back a frame to the stack in scattered buffers
("Gather Read"). Note that to enable this feature, this macro needs to be added,
and tfUseInterfaceScatRecv needs to be called on the interface that supports it.

TM_INDRV_INLINE_SEND_RECV
This macro is defined by default.
Undefine/delete the TM_INDRV_INLINE_SEND_RECV macro to test loop back/
intra machine driver with a separate recv task. In that case, the intra machine
received data will no longer be processed in the send path, but will be processed
when tfRecvInterface/tfRecvScatInterface is called. In the examples directory,
the txscatlp.c, and txscatdr.c modules contain sample code that uses this feature.

TM_DISABLE_TCP_ACK_PUSH
This macro is uncommented by default. When this macro is commented out,
Turbo Treck TCP will ACK every TCP segment that it receives that has the PUSH
bit set. Comment out this macro if you need the Turbo Treck stack to interoperate
well with a peer that runs Windows 2000, because Internet Explorer waits for the
ACK response to the PUSH bit being set before sending any new data.

TM_SINGLE_INTERFACE_HOME
If this macro definition is added to trsystem.h, it will reduce code size by approxi-
mately 4.5 kilobytes by removing support for multiple interfaces and multi-
homing. Note that when this macro is enabled, you can only have a single
interface and a single IP address configured on that interface.

Integrating into Your Environment

4.9

Warning: Defining this will prevent addition of the loop back device.
1. Packets sent to the single interface IP address will be sent all the way

to the driver, instead of being loop back by the stack.
2. Packets cannot be sent to the IP loop back address, 127.0.0.1.

TM_MULTIPLE_CONTEXT
This macro is commented out by default. Uncomment this macro if you want to
run multiple instances of the Turbo Treck TCP/IP stack. Running multiple
instances of the Turbo Treck stack is further described in appendix A of this
manual.

TM_DISABLE_ANSI_LINE_FILE
This macro is only relevant when TM_ERROR_CHECKING is #define’d, in which
case the tm_assert macro uses the ANSI __LINE__ and __FILE__ macros (if
available) to print the source line number and source file name identifying where
in the code an assertion failure occurred. Uncomment the
TM_DISABLE_ANSI_LINE_FILE macro if your compiler does not support the
ANSI__LINE__ and __FILE__ macros.

TM_DISABLE_TCP_RFC2414
Uncomment this macro if you want to disable the TCP Initial Send Window
Increase as described in RFC-2414.

TM_PC_LINT
Uncomment this macro if you are using Gimpel Software’s PC-lint to check the
Turbo Treck stack code.

TM_TCP_ANVL
Uncomment this macro when testing the Treck stack against Ixia’s Automated
Network Validation Library (ANVL).

TM_USE_AUTO_IP
This macro is commented out by default. Uncomment this macro, if you want to
use Auto IP Configuration, or want to add collision detection.

TM_USE_RAW_SOCKET
Uncomment this macro if you want to use raw sockets (tfRawSocket) which
allows you to send data above the IP layer or to send data with an IP
header, and to receive data with an IP header.
TM_USE_REUSEADDR_LIST
Uncomment this macro if you want to use the SO_REUSEADDR socket level
option with setsockopt(), which allows you to bind the same port number to
multiple sockets using different local IP addresses.

TM_PPP_LQM
Uncomment this macro if you want to use PPP Link Quality Monitoring.

Treck Real-Time TCP/IP User’s Manual

4.10

Models for Running Turbo Treck
TM_TRECK_NO_KERNEL
This macro is used to compile the stack so that it will not use an RTOS/Kernel.
When you do not have a real time operating system, you will not need to use the
locking system that the Turbo Treck protocol stack provides. Note that you will
not be able to make any calls that will cause the system to block. You must ensure
that any call into the Turbo Treck protocol stack will not block. Critical sections for
the driver interface are still enabled when you are using Turbo Treck without a
kernel.

TM_TRECK_NONPREEMPTIVE_KERNEL
This macro is used to compile the stack so that it will use a non-preemptive kernel.
You must ensure that your kernel is not preemptive before you define this macro.
This macro disables the locking system, which is not needed by a non-preemptive
kernel. When you are using a non-preemptive kernel you may still make calls to the
Turbo Treck protocol stack that are either blocking or non-blocking. Critical sections
for the driver interface are still enabled when you are using Turbo Treck with a non-
preemptive kernel.

TM_TRECK_TASK
This macro is used to compile the stack so that it can be used as an independent
task. When using Turbo Treck in this manner, no ISR may call any Turbo Treck
function. In this model, there are no critical sections and no blocking may occur.
This model is typically used when the application and the Turbo Treck code are in
the same task and the device driver sends messages through the operating system
to the task. It is similar to using Turbo Treck without a kernel. It may be used with
either a preemptive or a non-preemptive kernel.

TM_TRECK_PREEMPTIVE_KERNEL
This macro is used to compile the stack so it can be used with a preemptive kernel.
In this model, all critical sections are enabled. You may also feel free to make
blocking or non-blocking calls in this environment. This model is the most popular
for systems integrating Turbo Treck into their environment.
TM_TASK_RECV
This macro is used to notify the stack that a separate blocking receive task will be
used. It is not required to use a separate receive task. However, it is usually efficient
to do so. The receive task will be responsible for processing all received packets
from a given interface. If more than one interface is defined on the system, more
than one receive task may be used. If you wish to make the decision to use a
blocking receive task at run time, then you should define this macro. A separate
blocking receive task can only be used if you are using a real-time operating system,
and you are using the Turbo Treck protocols as a shared library.
Note: It is possible to use a polling (i.e. non blocking) separate receive task, in
which case you do not need to define TM_TASK_RECV.

Integrating into Your Environment

4.11

TM_TASK_XMIT
This macro is used to notify the stack that a separate blocking transmit task will be
used to send packets to the device driver. A separate blocking transmit task can
only be used if you are using a real time operating system, and you are using the
Turbo Treck protocols as a shared library. If more than one interface is defined on
the system, more than one transmit task may be used. It is not required to use a
separate blocking transmit task. If no transmit task is used, then the packets are
queued to the device driver send queue, and are sent to the driver in the context of
the sending thread. The sending thread could be a user application task sending
data, or the receive task sending a TCP acknowledgment, or a PING echo reply, or
the timer task re-transmitting data. If a separate transmit task is used, then packets
are queued to the device send queue in the context of the sending thread. Then,
when a context switch occurs, the packets are sent to the driver in the context of the
transmit task. In most cases it is inefficient to use a separate blocking transmit task
because it requires a context switch on nearly every packet sent by the sending
thread.
Note: It is possible to use a polling (i.e. non blocking) separate transmit task,
in which case you do not need to define TM_TASK_XMIT.

TM_TASK_SEND
This macro is used to notify the stack that a separate blocking send complete task
will be used. Notice that this is not a send task but a send complete task. The user
calls the send complete function in the context of the send complete task, and this
allows the user to adjust the priority of that task. In most cases, it is inefficient to
use a separate send complete task. The most efficient means of processing send
completes is in the context of the task that is calling the actual driver send routine.
The reason that it is inefficient is because a separate send complete task requires a
context switch on nearly every packet that was sent.
Note: It is possible to use a polling (i.e. non blocking) separate send complete
task, in which case you do not need to define TM_TASK_SEND.

Timer Updates
TM_TICK_LENGTH
This macro is used to define the default value that will be used to specify the
interval between timer updates for the protocol stack. This is a default value and
can be changed at run-time. The value specified is in milliseconds. The accuracy of
this time is not critical. This value should be the average time in between updates to
the Turbo Treck Timer System. The typical values used for this macro are between
10 and 100 milliseconds.

Treck Real-Time TCP/IP User’s Manual

4.12

Word Order
You do need to know if your processor is big endian or little endian. “Endian” refers
to the byte order of integers (both long and short) on the processor. For more
information on the difference between big and little endian, please see the chapter
“Introduction to TCP/IP”.
TM_LITTLE_ENDIAN
This macro is used to let the stack know at compile time that the processor is a little
endian processor. If you choose to use this macro on a big endian processor, you
will see your packets with the word fields reversed.
TM_BIG_ENDIAN
This macro is used to let the stack know at compile time that the processor is a big
endian processor. If you choose to use this macro on a little endian processor, you
will see your packets with the word fields reversed.

Memory Allocation
TM_USE_SHEAP
If the user defines this macro, the stack allocates its blocks of memory from the
Turbo Treck simple heap static array using the simple heap allocation routine,
tfSheapMalloc, instead of calling the RTOS tfKernelMalloc. Similarly the Turbo
Treck stack will release an allocated block of memory (of size bigger than 4096
bytes) by calling the Turbo Treck simple heap free routine tfSheapFree, instead of
calling the RTOS tfKernelFree. The user will define this macro if the user’s RTOS
does not provide heap management routines, or if the user does not want the
Turbo Treck stack to allocate its blocks of memory from the RTOS heap. Note that
if you define this macro, and thereby do use the Turbo Treck stack simple heap,
you cannot disable the Turbo Treck stack dynamic memory allocation (see
TM_DISABLE_DYNAMIC_MEMORY above), since the Turbo Treck simple heap
can only handle freeing blocks that are bigger than 4096 bytes. For the same reason,
you cannot call tfFreeDynamicMemory if you define this macro.

TM_SHEAP_SIZE
If you do define TM_USE_SHEAP, then you also have to define TM_SHEAP_SIZE,
to give the size in bytes of the Turbo Treck simple heap array.

TM_DYNAMIC_CREATE_SHEAP
Normally, the Treck simple heap is implemented as a static array. However,
you can override this behavior by defining the macro
TM_DYNAMIC_CREATE_SHEAP in your trsystem.h file, in which case you
decide how you want to implement it (i.e. dynamic memory allocation specific to
your RTOS) by customizing the API tfKernelSheapCreate.

Integrating into Your Environment

4.13

Intel Far Data and Code
TM_FAR
This macro is used to allow access to far data on an Intel processor (normally
running in real mode). It should be defined to far if you need to access far data. For
other processors, it should not be defined.
TM_CODE_FAR
This macro is used to allow access to far code sections on an Intel processor. If the
stack is compiled in small model, you may have functions that are in other code
segments that are called by the Turbo Treck protocol stack. In this case, you
should define this macro to be far. For other processors, it should not be defined.

Data Alignment
TM_ETHER_HW_ALIGN
Various Ethernet chips exist with the ability to make use of DMA. Many of these
chips also come with the requirement that their buffers be aligned on a certain byte-
boundary (4-byte and 16-byte being most common). TM_ETHER_HW_ALIGN
defines how many bytes each Ethernet buffer obtained with tfGetEthernetBuffer
will be aligned to. This macro defaults to 4.

Predefined Processor Macros
TM_INTEL_X86
TM_MOTOROLA_CPU32
TM_MOTOROLA_68K
TM_MOTOROLA_PPC
TM_TMS320_C3
TM_TMS320_C5
TM_TMS320_C6
TM_ARM7

These macros are used to specify the processor you are using and your environment.
They simply set up the proper word order or endian for the processor.

Compiler Specification
These optional macros are used to define the compiler that you are using. They are
used to allow in-line assembly for the critical sections and assembly cores for one’s
compliment checksums on some platforms. Not all of the supported compilers are
listed here, because some of them are automatically determined during compilation
(see the TRMACRO.H file).

TM_COMPILER_GHS_ARM
This is used for the Green Hills ARM compiler
TM-COMPILER_GHS_PPC

Treck Real-Time TCP/IP User’s Manual

4.14

This is used for the Green Hills PowerPC compiler
TM_COMPILER_SDS
This is used for the SDS 68K compiler
TM_COMPILER_DDI_PPC
This is used for the Diab Data Power PC compiler
TM_COMPILER_MRI_68K
This is used for the Microtec Research (Mentor Graphics) 68K compiler

RTOS/Kernel Environments
These macros are used for various predefined kernels. With these macros, you can
use one of the real time operating systems listed below and most of the above
settings will be set for you. Feel free to use these as examples if you decide to add
a different RTOS.

TM_KERNEL_ELX_86
This is used for the ELX-86 RTOS
TM_KERNEL_UCOS_X86
This is used for uC/OS for the Intel Platform
TM_KERNEL_UCOS_PPC
This is used for uC/OS for the Motorola Power PC Platform
TM_KERNEL_UCOS_CPU32
This is used for uC/OS for the Motorola CPU32 Core (683xx)
TM_KERNEL_AMX_CPU32
This is used for AMX for the Motorola CPU32 Core (683xx)
TM_KERNEL_THREADX_ARM7
This is used for ThreadX for the ARM7 platform
TM_KERNEL_AMX_X86
This is used for AMX for the Intel Platform
TM_KERNEL_DOS_X86
This is used for DOS for the Intel Platform

Integrating into Your Environment

4.15

Step 3 - Creating the Build Command (.BAT)
Files for a DOS Environment and Building the
Library

Instead of using make files to build the Turbo Treck TCP/IP library, We have put
together simple batch files for a DOS build environment. These are designed to be
easy to understand and design for compilers that we do not support yet. The other
feature of using batch files for DOS is that they can be easily converted to shell
scripts for the UNIX environment. It is best to think of the batch files as a three-
tiered system for building your project.

TIP: Before running any batch files to build the system, you should run the batch
file “SETUP.BAT” located in the TRECKBIN directory to setup the proper path
to the TurboTreck directories.

Tier 1: Compiler Primitives and Library Utility Primitives
Tier 2: Compile/Library all the Turbo Treck code
Tier 3: Automated Build System

Let’s look at each of these tiers individually.

Tier 1: Setting up the compiler and library utility primitives
Here you simply create a batch file (.BAT) that contains the compiler command line.
The first parameter (%1) is the file to compile (without the .C extension). The
second parameter is optional but is typically used for a #define that is passed to the
compiler when building the Turbo Treck code.

An example of this is as follows:

File bcl86cc.bat

@echo off
if “%2”==”” goto noopt
bcc -v -ml -1 -c -w9999 -I%trhome%\include -D%2 %1.c > %1.err
goto end
:noopt
bcc -v -ml -1 -c -w9999 -I%trhome%\include %1.c > %1.err
:end

This file could have been as simple as this:

bcc -v -ml -1 -c -w9999 -I%trhome%\include %1.c > %1.err

Treck Real-Time TCP/IP User’s Manual

4.16

That is all there is to the compile batch file, but we still need a library batch file. We
do the same thing for the library utility. Notice that the library utility does not use
the second parameter (%2) and the first parameter is the same as in the compile
command line.

An example of this is as follows:

File bc86lib.bat

@echo off

tlib treck +%1.obj

An important thing to note is that our command line only adds a single object to the
library.

You should place both of these files into the TRECKBIN directory.

Now that you have completed these two tasks, you can build the Turbo Treck
Library.

Tier 2: Compile/Library all the Turbo Treck code
The batch files that are used for this tier are called BUILD.BAT , and
BUILDLIB.BAT. You do not need to modify this file (unless you are removing
protocols from the build). This file can be called directly from the DOS command
line like this.

C> build bcl86cc

Note: Your current directory MUST be the SOURCE directory in order to build
the Turbo Treck objects.

Once the build completes (and it should without warnings or errors if your paths are
set correctly), you are ready to create your library like this.

C> buildlib bc86lib

If you have done everything correctly to this point, you should have a library.
If you get any compile errors, please make sure that they are not due to any changes
to the TRSYSTEM.H file. If you still have errors (or warnings), please contact
technical support.

Integrating into Your Environment

4.17

Tier 3: Setting up the Automated Build System
There is one final batch file that you can add/modify. It is the automation that
builds the “C” code into objects and inserts the objects into a library. As you can
imagine, it is fairly simple. It calls BUILD.BAT to compile first, then BUILDLIB.BAT
to put the objects into a library. In our Tier 3 batch files, we have them pass an extra
#define into the build so we don’t have to modify TRSYSTEM.H. We also delete
the library before we build to make sure that it is always a clean library. Because we
support more than one compiler, the tier 3 batch files are a little more complex than
you would design for your system.

An example of one of our build batch files is as follows:

File ucosx86l.bat
@echo off
if “%1”==”” goto usage
del treck.lib
call build %1l86cc TM_KERNEL_UCOS_X86
call buildlib %186lib
goto end
:usage

echo %0 builds Turbo Treck TCP/IP for the Intel x86 Real Mode
Processor
echo running under uC/OS v1.1 (LARGE MODEL)
echo .
echo Usage:
echo %0 compiler
echo .
echo Compilers supported:
echo Microsoft “C” 6.0: MC
echo Borland “C” 5.0: BC
echo .
echo Example: %0 MC
:end

Your build batch file does not need to be nearly this complex. It can be as simple as:

@echo off
del TRECK.LIB
call build bcl86cc
call buildlib bc86lib

You then use this file to build the TCP/IP library to link with your application, kernel,
and device driver. This way you do not need to call build and buildlib from the DOS
command prompt.

Treck Real-Time TCP/IP User’s Manual

4.18

Step 4 - Creating an RTOS/Kernel Interface

This section describes how to setup the RTOS/Kernel Interface. Turbo Treck Real-
Time TCP/IP is designed so that it can use nearly any Real Time Operating System.
If you do not have an RTOS, then you will still need to read this section so that you
can understand how the “No RTOS” version of the kernel interface is put together.
There are already pre-configured RTOS/kernel Interfaces. These are located below
the SOURCE directory in the following locations:

uC/OS Motorola CPU32 SDS source\kernel\ucos
\motorola\cpu32\sds

uC/OS Motorola CPU32 MRI source\kernel\ucos
\motorola\cpu32\mri

uC/OS Motorola PowerPC Diab source\kernel\ucos
\motorola\ppc\diab

uC/OS Intel x86 Real Borland
v4.5/5.0

source\kernel\ucos\
intelx86\real\borland

uC/OS Intel x86 Real Microsoft
v6.0

source\kernel\ucos
intelx86\real\msc60

AMX Motorola CPU32 SDS source\kernel\amx\cj

AMX Intel x86 Real Borland source\kernel\amx\aj

RTOS Processor
Mfg.

Processor
Type Compiler Location

ThreadX Motorola PowerPC Green
Hills

source\kernel\motorola\
threadx\ppc\ghs

The file name for the kernel interface is normally named as follows:
trXXX.c. Where XXX is the name of the kernel. For example the uC/OS interface is
named trucos.c. In each of these files you will find the RTOS/kernel interface
functions. You will find the TM_FAR macro used in these interface functions. This
macro is defined to be far on the Intel processor running in real/small model. You
will also notice that these files all include TRSOCKET.H. This single file contains
all of the types that you will need to build the RTOS/Kernel interface.

Integrating into Your Environment

4.19

The kernel interface is broken down into the following elements.

Initialization
Memory Allocation and Free
Critical Section Handling
Error Logging
Warning Information Logging
Task Suspend and Resume
ISR Interface

Initialization
The function tfKernelInitialize is used to initialize the Turbo Treck/kernel interface.
It is not needed for all RTOS/Kernels. The system calls this function prior to any
other kernel calls. You should think of this function as a way to get things initialized
for your environment. If this function is not needed, it should be a stub function.

Example:

void tfKernelInitialize (void)
{
/* Initialize the Turbo Treck to Kernel Interface */
 return;
}

Treck Real-Time TCP/IP User’s Manual

4.20

Memory Allocation and Free
The functions tfKernelMalloc and tfKernelFree are used to allocate and free
memory that is to be used by the Turbo Treck protocol stack. They are the same
definition as the ANSI malloc and free functions. We have provided these functions
to give you the flexibility to use the memory allocation that you want for your
environment. You can use your RTOS malloc and free. These functions are used to
pass memory blocks to the Turbo Treck Memory System. Unless you have disabled
the dynamic memory feature, the Turbo Treck Memory System will not free these
blocks unless they are larger than the Turbo Treck Memory System keeps track of.
By definition, there will be more mallocs than frees, however, as time progresses
there will be fewer and fewer mallocs.

Examples:
void TM_FAR *tfKernelMalloc (unsigned size)
{
 return(malloc(size));
}

void tfKernelFree (void TM_FAR *memoryBlock)
{
 free(memoryBlock);
}

Turbo Treck Simple Heap

TM_USE_SHEAP
If the user defines this macro, the stack allocates its blocks of memory from the
Turbo Treck simple heap static array using the simple heap allocation routine,
tfSheapMalloc, instead of calling the RTOS tfKernelMalloc. Similarly the Turbo
Treck stack will release an allocated block of memory (of size bigger than 4096
bytes) by calling the Turbo Treck simple heap free routine tfSheapFree, instead of
calling the RTOS tfKernelFree. The user will define this macro if the user’s RTOS
does not provide heap management routines, or if the user does not want the
Turbo Treck stack to allocate its blocks of memory from the RTOS heap. Note that
if you define this macro, and thereby do use the Turbo Treck stack simple heap,
you cannot disable the Turbo Treck stack dynamic memory allocation (see
TM_DISABLE_DYNAMIC_MEMORY above), since the Turbo Treck simple heap
can only handle freeing blocks that are bigger than 4096 bytes. For the same reason,
you cannot call tfFreeDynamicMemory if you define this macro.

TM_SHEAP_SIZE
If you do define TM_USE_SHEAP, then you also have to define
TM_SHEAP_SIZE, to give the size in bytes of the Turbo Treck simple heap
array.

Integrating into Your Environment

4.21

TM_DYNAMIC_CREATE_SHEAP
Normally, the Treck simple heap is implemented as a static array. However,
you can override this behavior by defining the macro
TM_DYNAMIC_CREATE_SHEAP in your trsystem.h file, in which case you
decide how you want to implement it (i.e. dynamic memory allocation specific to
your RTOS) by customizing the API tfKernelSheapCreate.

tfKernelSheapCreate
This finction dynamically allocates the Turbo Treck simple heap.
tfKernelSheapCreate is only called when TM_DYNAMIC_CREATE_SHEAP
has been #define’d. The size of the simple heap allocated must be
TM_SHEAP_SIZE, with the start of the simple heap (i.e. the pointer returned)
being aligned on a 32-bit boundary. Please see tfKernelSheapCreate in the
programmer’s reference section of this manual.

Critical Section Handling
The functions tfKernelSetCritical and tfKernelReleaseCritical are used to set
critical sections around code that is NOT reentrant. The critical sections are used
to prevent ANY other calls into the protocol stack. These are used to prevent one
task from updating a pointer while another task is accessing it. Without critical
sections, there is the chance of corrupting pointers if a pointer update is interrupted
by another task or an ISR. The Turbo Treck protocol stack is designed to keep
these critical sections to a minimum (usually about five assembly instructions).

Example for an Intel x86:

void tfKernelSetCritical (void)
{
 _asm(“cli”);
}

void tfKernelReleaseCritical (void)
{
 _asm(“sti”);
}

Treck Real-Time TCP/IP User’s Manual

4.22

TIP: If you can guarantee that no preemption of Turbo Treck code will occur by
another task or ISR calling a TurboTreck function (this includes the
tfNotifyInterfaceIsr function), then the critical sections are not needed. It is
recommended that you continue to use the critical sections unless you are
absolutely sure that no preemption of Turbo Treck code will occur.

You can also in-line these functions by defining tm_kernel_set_critical and
tm_kernel_release_critical to be the assembly for these functions to save the
extra function call in the TRSYSTEM.H file. You can find examples in
TRMACRO.H. This will enhance the data transfer speed.

Error Logging
The function tfKernelError is used to report unrecoverable error messages and
cause a restart of the system. Errors that are reported include corrupt pointers and
invalid memory. The Turbo Treck protocol stack must not continue once this
function has been called.

Example:

void tfKernelError (char TM_FAR *functionName,
 char TM_FAR *errorMessage)
{
 printf(“Fatal Error in Function %s: %s \n”,
 functionName, errorMessage);
 while(1)
 {
/*
 * LOOP Forever until the watchdog timer fires and
 * reboots
 */
 ;
 }
}

Warning Information Logging
The function tfKernelWarning is used to convey to the user any abnormalities that
occur during the normal operation of the Turbo Treck protocol stack. These would
include such items as bad checksums. These are not fatal errors and the stack
should continue to operate normally. This function is provided to help the user
diagnose network problems.

Example:
void tfKernelWarning (char TM_FAR *functionName,
 char TM_FAR *warningMessage)
{
 printf(“Warning in Function %s: %s \n”,
 functionName, warningMessage);
}

Integrating into Your Environment

4.23

Task Suspend and Resume
This set of functions is the most complex portion of the RTOS/Kernel Interface. For
task suspend and remove, we rely on a primitive that is available in most RTOS/
Kernels. This primitive is a counting semaphore with an associated counter initialized
to zero. The features that we are looking for in the primitive are:

• It can be posted to before it is pended on
• Only one task waiting on the primitive will be re-scheduled when a post

occurs
• The primitive is not tied to a specific task

Note: If your RTOS does not provide a counting semaphore, but does have an
event flag, please use the implementation provided in kernel\trcousem.c, or
kernel\trctsem2.c. Follow the instructions given in the file you picked, and in
“Appendix B”.

An example of why we need this feature is as follows:

1) The user calls the socket API recv in blocking mode.
2) There is no data to receive so the Turbo Treck stack starts to call the pend

routine.
3) A context switch occurs for a receive task, before the user task finished the

pend call.
4) The receive task processes the incoming packet and queues it to the socket the

user had opened, and calls post.
5) A context switch then occurs back to the user task that will then finish calling

pend.

Without the ability to post before the pend, the user task calling recv will wait
forever. The other option is to call pend in a critical section (which is VERY
undesirable for a real-time system). A counting semaphore with an associated counter
initialized to zero solves this problem, so we use this primitive for task suspend and
resume.

Treck Real-Time TCP/IP User’s Manual

4.24

We must first look at the data type that is used to carry the counting semaphore.
For this we use a union of all basic types. Because we use this to hold the counting
semaphore, we are able to integrate to any RTOS/Kernel. This union is defined in
the file TRSOCKET.H, as follows:

typedef union tuUserGenericUnion
{
 unsigned long gen32bitParm;
 long genSlongParm;
 void TM_FAR *genVoidParmPtr;
 unsigned short gen16BitParm;
 unsigned int genUintParm;
 int genIntParm;
 unsigned char gen8BitParm;
 char genCharParm;
} ttUserGenericUnion;

By using the ttUserGenericUnion data type, you will be able to pass your
counting semaphore between Turbo Treck protocols and your RTOS. A set of
three functions provides access between the Turbo Treck protocol stack and
your RTOS. These functions are used to create, pend on, and post on a counting
semaphore that will be used by the protocol stack. Because a task cannot pend
more than once at any given time, and because the Turbo Treck stack re-uses
unused counting semaphores dynamically, the maximum number of counting
semaphores that will be needed would be equal to the number of tasks that are
calling Turbo Treck. The RTOS functions below are only examples. You will need
to map these calls into your own RTOS. If you are not using an RTOS, then these
functions should be stubs.

The tfKernelCreateCountSem function is used to create a counting semaphore
that is provided by the operating system with an associated counter initialized to
zero. If the counting semaphores are created at compile time with your operating
system, then you simply pass one of these back to Turbo Treck. An example of
this function is as follows:
int tfKernelCreateCountSem (ttUserGenericUnionPtr
 countingSemaphore)
{
 int retCode;
/* Create and Initialize the semaphore to zero */
 countingSemaphore->genVoidParmPtr = RTOSSemCreate(0);
 if (countingSemaphore->genVoidParmPtr != (void TM_FAR
*)0)
 {
 retCode = 0;
 }
 else
 {
 retCode = -1;
 }
 return(retCode);
}

Integrating into Your Environment

4.25

The function tfKernelPendCountSem is used to pend or wait on a counting
semaphore. This function must wait indefinitely until the post occurs. We pass
back in the counting semaphore in the union that was used for the create. An
example of this is as follows:

int tfKernelPendCountSem (ttUserGenericUnionPtr
countingSemaphore)
{
 int retCode;

 if((RTOSSemPend(countingSemaphore>genVoidParmPtr)) ==
 RTOS_NO_ERR)
 {
 retCode = 0;
 }
 else
 {
 retCode = -1;
 }
 return(retCode);
}

The function tfKernelPostCountSem is used to wake up another task or thread that
has called tfKernelPendCountSem. An example of this function is as follows:

int tfKernelPostCountSem (ttUserGenericUnionPtr
countingSemaphore)
{
 int retCode;
 if ((RTOSSemPost(countingSemaphore->genVoidParmPtr)) ==
 RTOS_NO_ERR)
 {
 retCode = 0;
 }
 else
 {
 retCode = -1;
 }
 return(retCode);

}

Treck Real-Time TCP/IP User’s Manual

4.26

ISR Interface
The ISR interface is used to provide an interface for device drivers (as device
drivers are the only items that need an interrupt service routine). In the ISR interface,
we need to be able to install an interrupt service routine and provide a mechanism
to notify the protocol stack about ISR events.

The function tfKernelInstallIsrHandler is used to install an ISR handler. Device
drivers written by Elmic USA normally call this function. It is not called directly
by the Turbo Treck protocol stack. If you do not use an Elmic device driver, then
you will not need this function in your interface. If you are using an Elmic driver,
then this function is used to install the device drivers interrupt handler. Our
drivers do not do any packet processing within the ISR. They simply notify task
level routines that an event has occurred.

void tfKernelInstallIsrHandler(ttUserIsrHandlerPtr funcPtr,
 unsigned long offSet)
{
/*
 * funcPtr is the Function To Be Called as the Handler
 * offSet is the offset into the Interrupt Vector Table
 */
 RTOSInstallISR((void TM_FAR *)funcPtr, offSet);
}

Integrating into Your Environment

4.27

Device Interface Routines
The set of four functions tfKernelCreateEvent, tfKernelPendEvent,
tfKernelIsrPostEvent, tfKernelTaskPostEvent are used internally by the Turbo
Treck device interface routines. They are only needed if the user wishes to use, and
to block in, the receive task, or the transmit task, or the send complete task.
tfKernelTaskYield is only used if the user uses a trasnmit task, and wishes to call
the Turbo Treck function tfInterfaceSpinLock inside the device driver send function
to let the other tasks run, while waiting for the device driver to be ready to transmit.

No RTOS or event scheduler with main loop:
If you do not have any RTOS, or if you have an event scheduler with a main loop
implementation, then you have neither defined
TM_TRECK_PREEMPTIVE_KERNEL, nor
TM_TRECK_NONPREMTIVE_KERNEL in your trsystem.h. In that case, then the
first four functions are not needed, because they will not be called, since in that
case the user is not allowed to block.

Preemptive or non-preemptive kernel:
If you are using a preemptive kernel, or a non-preemptive kernel, then you have
defined either TM_TRECK_PREEMPTIVE_KERNEL or
TM_TRECK_NON_PREEMPTIVE_KERNEL in your trsystem.h. In that case, you
will need some or all of these first 4 functions, as shown in the following table,
depending on which of the following additional macros you have defined in your
trsystem.h.

TM_TASK_RECV TM_TASK_XMIT

tfKernelCreateEventtfKernelCreateEvent

tfKernelPendEvent

tfKernelIsrPostEvent

tfKernelPendEvent

TM_TASK_SEND

tfKernelCreateEvent

tfKernelPendEvent

tfKernelIsrPostEvent

tfKernelTaskPostEvent

Note that if you have not defined any of these macros, you do not need to provide
any of these 4 functions, since they will not be called.

Treck Real-Time TCP/IP User’s Manual

4.28

tfKernelCreateEvent
The function tfKernelCreateEvent is used to create a counting semaphore, or
binary semaphore, of event flag. It is only called from task level. One event will
be created per interface, and per TM_TASK_XXXX macro defined. For example,
if you have configured 2 interfaces, and have defined TM_TASK_RECV,
TM_TASK_XMIT, and TM_TASK_SEND, then you will need 6 events. At most
one task will be waiting on that kernel primitive.

void tfKernelCreateEvent (ttUserGenericUnionPtr eventPtr)
{
 void *semaphorePtr;

 /* Initialize the semaphore to zero */
 semaphorePtr = RTOSSemCreate(0);
 if (semaphorePtr != (void *)0)
 {
 eventPtr->genVoidParmPtr = (void *)semaphorePtr;
 }
 else
 {
 tfKernelError (“tfKernelCreateIsrEvent”,
 “Unable to Create Semaphore”);
 tm_thread_stop;
 }
}

tfKernelPendEvent
The function tfKernelPendEvent is used to pend on an event that will be posted
to. The task calling this function must wait indefinitely while waiting for the post
event call. It is only called from task level, either from tfWaitReceiveInterface, or
from tfWaitXmitInterface, or from tfWaitSentInterface.

/*
 * Wait on an Event
 */
void tfKernelPendEvent (ttUserGenericUnionPtr eventPtr)
{
 int kernelError;

 RTOSSemPend(eventPtr->genVoidParmPtr, 0, &kernelError);
 if (kernelError != RTOS_NO_ERR)
 {
 tfKernelError (“tfKernelPendIsrEvent”,
 “Unable to Pend on Semaphore”);
 tm_thread_stop;
 }
}

Integrating into Your Environment

4.29

tfKernelIsrPostEvent
The function tfKernelIsrPostEvent is used to signal that an event has occurred
and resume tasks that are waiting via tfKernelPendEvent. This is called from
tfNotifyInterfaceIsr, itself called from an interrupt handler.

Note: Most RTOS have special calls or wrappers when a system call is called
from an interrupt handler. Please consult your RTOS manual for the proper
way to post from an interrupt handler.

void tfKernelIsrPostEvent (ttUserGenericUnionPtr eventPtr)
{
 int kernelError;

 kernelError = RTOSSemPost(eventPtr->genVoidParmPtr);
 if (kernelError != RTOS_NO_ERR)
 {
 tfKernelError (“tfKernelPostIsrEvent”,
 “Unable to Post on Semaphore”);
 }
}

tfKernelTaskPostEvent
The function tfKernelTaskPostEvent is used to signal that an event has
occurred and resume the transmit task waiting via tfKernelPendEvent. This call
is only called from the Turbo Treck stack in the context of a task. This call is
needed if the user has defined TM_TASK_XMIT macro in trsytem.h, or
if the user calls tfNotifyInterfaceTask and has defined either TM_TASK_RECV
or TM_TASK_SEND.

void tfKernelTaskPostEvent (ttUserGenericUnionPtr eventPtr)
{
 int kernelError;

 kernelError = RTOSSemPost(eventPtr->genVoidParmPtr);
 if (kernelError != RTOS_NO_ERR)
 {
 tfKernelError (“tfKernelPostIsrEvent”,
 “Unable to Post on Semaphore”);
 }
}

Treck Real-Time TCP/IP User’s Manual

4.30

tfKernelTaskYield
The function tfKernelTaskYield is used to yield the CPU, and let other tasks run.
This function is called only if the user uses a transmit task, and calls the Turbo
Treck function tfInterfaceSpinLock from within the device driver send function
to let other tasks run and access the device driver routines, while waiting for the
device driver to be ready to transmit.

void tfKernelTaskYield (void)
{
 RTOSYield ();
}

This completes the RTOS interface. After you have made these functions map onto
your RTOS, you are ready to move onto the next phase. We suggest that you
compile the code that you have written in this phase.

Integrating into Your Environment

4.31

Step 5 - Hooking in the Timer

Now that you have compiled the library and created an RTOS interface, you are
ready to consider how you must hook in the timer. Notice that the timer interface is
not part of the RTOS interface. This is because the timer interface can be hooked up
in different ways. These different methods do not depend on the RTOS interface.
There are two different methods to hook up the timer. You must not call any timer
functions prior to calling tfStartTreck.

Method 1: Use a Timer Task to Update and Execute the Timers.

Method 2: Use a Timer ISR to Update the Timers, and Execute from either a
main line loop or a task.

These methods are described in more detail below:

Method 1: A Timer Task to Update and Execute Timers
In this model, you will have a simple loop in a separate timer task. In this loop you
will update the timers and execute the timers that have expired. You will then pause
the task for some fixed interval. This interval MUST match the tick count that you
have setup for the system (see trsystem.h or tfInitTreckOptions). This is the most
popular method to use when you have a real time operating system. An example of
this method is as follows:

#include <trsocket.h>
void timerTask(void)
{
 while(1)
 {
/* Update the Timers */
 tfTimerUpdate ();
/* Execute the Timers */
 tfTimerExecute ();
/* Call the RTOS to delay for 1 clock tick */
 RTOSTimeDelay(1);
 }
}

Treck Real-Time TCP/IP User’s Manual

4.32

If your RTOS does not allow you to start a task at run-time, then you should use a
simple flag or semaphore to prevent the calls to the timer prior to calling tfStartTreck.

An example of this is as follows:

#include <trsocket.h>
static int treckStarted=0;

void mainTask(void)
{
 int errCode;
 errCode=tfStartTreck ()
 if (errCode=TM_ENOERROR)
 {
 treckStarted=1;
/* Other initialization code follows ... */
 }
}

void timerTask(void)
{
 while(1)
 {

/* Check to make sure that Turbo Treck has started */
 if (treckStarted)
 {
/* Update the Timers */
 tfTimerUpdate ();
/* Execute the Timers */
 tfTimerExecute ();
 }
/* Call the RTOS to delay for 1 clock tick */
 RTOSTimeDelay(1);
 }
}

Tip: A good timer interval is between 10ms and 100ms. It is not necessary
that the timer be VERY accurate between calls to tfTimerUpdate, but it should
be accurate on average over time. It is usually best to set the timer task to the
highest priority of tasks operating with the protocol stack, but it is not
necessary.

Integrating into Your Environment

4.33

Method 2: A Timer ISR to Update Timers and Execute
from Either a Main Line Loop or a Task.
In this method, you simply update the timers from an ISR routine using the call
tfTimerUpdateIsr. Note that this is a different call than from the call made at task
level (tfTimerUpdate). This call is designed to be able to be called from an interrupt
handler. It is not recommended to use this method if you have an RTOS. You must
NOT call the function tfTimerUpdateIsr before you call the function tfStartTreck.
In this regard, it has the same rules as tfTimerUpdate. An example of using this
method for a main line loop is as follows:

#include <trsocket.h>
static int treckStarted=0;

void timerIsrHandler(void)
{

/* Check to make sure that Turbo Treck has started */
 if (treckStarted)
 {
/* Update the Timers */
 tfTimerUpdateIsr ();
 }
}

void main(void)
{
 int errCode;
 errCode=tfStartTreck ();
 treckStarted=1;
/* Other initialization code follows ... */
 if (errCode == TM_ENOERROR)
 {
 while(1)
 {
 tfTimerExecute ();
/* Application code follows ... */
 }
 }
}

Tip: A good timer interval is between 10ms and 100ms. It is not necessary
that the timer be VERY accurate between calls to tfTimerUpdateIsr, but it
should be accurate on average over time.

Treck Real-Time TCP/IP User’s Manual

4.34

Step 6- Key Things to Start Using Turbo Treck
Now that you have a library and an idea of how to build your timer interface, you are
probably wondering how to start using the protocols on your platform. You should
at this point, try to use the loopback support built into the protocol stack. This will
let you know if there is a problem with the RTOS or the Timer interface. There is one
call that you MUST make into the protocol stack before you can start using it. That
function is called tfStartTreck. If you call this function (which does not take any
parameters), it will initialize all the stack parameters to defaults, if you do not call
tfInitTreckOptions first. If you have not set a tick length value in trsystem.h or
with tfInitTreckOptions, you will get a kernel warning. You will get a kernel error, if
you compile for the wrong byte order of your machine (big endian versus little
endian). The only call that you can make into the protocol stack, prior to calling
tfStartTreck, is tfInitTreckOptions. All of the functions mentioned here could be
found in the “Programmers Reference” section of the manual. As we mentioned
above you can use the function tfInitTreckOptions to change any of the default
parameters used for the stack. It is not recommend that you change any parameters
at this point, as the stack should work fine with the defaults that are set up.

The following is an example of how easy it is to start using the protocol stack.

#include <trsocket.h>

void main(void)
{
/* Define the variables that I need to Startup */
 int errorCode;
 int sd;

/* Start the protocol stack */
 errorCode=tfStartTreck ();

 if (errorCode == TM_ENOERROR)
 {
/* Now do my loopback code */
 sd=socket (PF_INET,SOCK_DGRAM,0);
 .
 .
 .

Integrating into Your Environment

4.35

Step 7 - Testing the New Library with a
Loopback Test

Now you are ready to start using Turbo Treck protocols in loopback mode. The
loopback address is defined as 127.0.0.1. You should setup a simple client/server to
make sure that packets traverse all the way down the stack and back up. The
loopback driver sits below TCP/IP so it is a good test to see if you have things
working thus far. If you are not familiar with “sockets” programming, then you
should review the section titled “Introduction to BSD Sockets”. Other good
reference material on this subject would include, “Introduction to TCP/IP Volume
3 (BSD Edition)” by Douglas E. Comer, and “UNIX Network Programming Volume
1”, by W. Richard Stevens. After you have completed the loopback test, you are
ready to move onto the next section.

The reason that we suggest that you complete the loopback test first is to reduce
the amount of items that you are attempting to debug. It is VERY difficult to debug
your RTOS interface, Timer interface, Device Driver, and Application all at the same
time. From our experience, we have found that most people have trouble with the
device driver (because it is where the software meets the hardware). If you test first
with loopback, you can isolate your debugging to the RTOS, Timer, and Loopback
application code first and debug the device driver last. One interesting item about
Turbo Treck protocols is that you do not need to recompile the protocol stack in
order to add your device driver later, so performing this task should not be too
much of a burden. If you are not familiar with sockets programming, the loopback
interface is a great place to learn.

Tip: You should not attempt to add your device driver until you are confident
that the stack is working correctly in loopback mode.

We have included an example of using the loopback interface. It is not intended to
be an example of using the protocol stack for high performance. It is written to be
easy to understand and follow. Please feel free to use this code as a guide in writing
your loopback test program.

Treck Real-Time TCP/IP User’s Manual

4.36

Example Loop Back Application:

#include <trsocket.h>
#include <stdio.h> /* for printf */

#define TM_PORT_LOOPBACK_TEST htons (10)

char bufferArray[1024];

/*
 * Example of a UDP socket loop back send and receive.
 */
void main (void)
{
 int errorCode;
 int failed;
 struct sockaddr_in addr;
 unsigned long ipAddr;
 int sd;
 int len;
 int recvdLength;
 int sentLength;

 failed = 0;
 sd = TM_SOCKET_ERROR;
 recvdLength = TM_SOCKET_ERROR;
 sentLength = TM_SOCKET_ERROR;
 ipAddr = 0UL;
/* Amount of data to send, and receive */
 len = sizeof(bufferArray);
/* Example setting the tick length at 10 milliseconds */
 errorCode = tfInitTreckOptions (TM_OPTION_TICK_LENGTH,
 (unsigned long)10);
 if (errorCode != TM_ENOERROR)
 {
 printf(“tfInitTreckOptions failed %d\n”,
 errorCode);
 failed = 1;
 }
 if (failed == 0)
 {

/* Start the Turbo Treck initialization */
 errorCode = tfStartTreck ();
 }
 if (errorCode != TM_ENOERROR && failed == 0)
 {
 printf(“tfStartTreck failed %d\n”,
 errorCode);
 failed = 1;
 }
 if (failed == 0)
 {
/* Open a UDP socket */
 sd = socket (PF_INET, SOCK_DGRAM, IP_PROTOUDP);
 }

Integrating into Your Environment

4.37

 if ((sd == TM_SOCKET_ERROR) && (failed == 0))
 {
/* Retrieve the socket error for failed socket call */
 errorCode = tfGetSocketError (sd);
 printf(“socket failed %d\n”,
 errorCode);
 failed = 1;
 }
 if (failed == 0)
 {
/* Bind the UDP socket to a well known UDP port */
 addr.sin_family = PF_INET;
 addr.sin_port = TM_PORT_LOOPBACK_TEST;
 addr.sin_addr.s_addr = 0;
 errorCode = bind (sd,
 (struct sockaddr TM_FAR *)&addr,
 sizeof(struct sockaddr_in));
 }
 if ((errorCode == TM_SOCKET_ERROR) && (failed == 0))
 {
/* Retrieve the socket error for failed bind call */
 errorCode = tfGetSocketError (sd);
 printf(“bind failed %d\n”,
 errorCode);
 failed = 1;
 }
 if (failed == 0)
 {
/* Send some loop back data to our own socket */
 addr.sin_addr.s_addr = inet_addr (“127.0.0.1”);
 sentLength = sendto (sd,
 bufferArray,
 len,
 0,
 (struct sockaddr TM_FAR *)&addr,
 sizeof(struct sockaddr_in));
 if ((sentLength == TM_SOCKET_ERROR) && (failed == 0))
 {
/* Retrieve the socket error for failed sendto call */
 errorCode = tfGetSocketError (sd);
 printf(“sendto failed %d\n”,
 errorCode);
 failed = 1;
 }
 if (failed == 0)
 {
 printf(“%d sent successfully\n”, sentLength);
/* Receive some loop back data from our own socket */
 recvdLength = recvfrom (sd,
 bufferArray,
 len,
 0,
 (struct sockaddr TM_FAR *)0,
 0);
 }

Treck Real-Time TCP/IP User’s Manual

4.38

 if ((recvdLength == TM_SOCKET_ERROR) && (failed == 0))
 {
/* Retrieve the socket error for failed recvfrom call */
 errorCode = tfGetSocketError (sd);
 printf(“recvfrom failed %d\n”,
 errorCode);
 failed = 1;
 }
 if (failed == 0)
 {
 printf(“%d received succesfully\n”, recvdLength);
 }
 }
 if (sd != TM_SOCKET_ERROR)
 {
/* All done. Close the socket */
 (void)tfClose (sd);
 if (failed == 0)
 {
 printf(“UDP LOOP BACK Test success\n”);
 }
 }
}

Integrating into Your Environment

4.39

Step 8 - Using Ethernet or PPP
Now that you are comfortable that the stack and interfaces to it are working correctly,
you are ready to include the link layer that you wish to use. For this operation, you
will need to define a handle to store the desired link layer into. We call this a link
layer handle and it is defined as a ttUserLinkLayer type. Adding (or using) a link
layer is a simple process. You simply call link layer USE function to pull in the
appropriate link layer from the library. These functions are called tfUseEthernet,
tfUseAsyncPpp, tfUseAsyncServerPpp, and tfUseNullLinkLayer. The null link
layer is used to pass raw IP datagrams directly to/from the device driver interface.
This way you can use the device driver interface to hookup a new link layer. In the
base TCP/IP package, you will receive both the Ethernet and Null link layers.

Examples of this follow:

{
 ttUserLinkLayer ethernetHandle;
 ttUserLinkLayer pppServerHandle;
 ttUserLinkLayer pppClientHandle;
 ttUserLinkLayer nullLinkHandle;

/* Select the Ethernet DIX protocol */
 ethernetHandle=tfUseEthernet ();

/* Select the PPP server Link Layer Protocol */
 pppServerHandle =
 tfUseAsyncServerPpp (notifyServerFuncPtr);

/* Select the PPP Client Link Layer Protocol */
 pppClientHandle =
 tfUseAsyncPpp (notifyClientFuncPtr);

/* Select the NULL Link Layer */
 nullLinkHandle=tfUseNullLinkLayer();
}

Note: PPP is an optional protocol, and if you did not purchase PPP and
attempt to call tfUseAsyncPpp or tfUseAyncServerPpp functions, you will get
an error.

Treck Real-Time TCP/IP User’s Manual

4.40

Step 9 - Adding a New Device Driver
This step is the most complicated because the device driver interface is so versatile.
The device driver interface is the same for all link layers (including PPP). You will
find existing device drivers, both on our web page and in the drivers directory. If we
have provided a device driver, chances are that you will still need to modify it for
your hardware platform. Device drivers can almost never be moved between different
hardware platform types without modification.

To allow you to hook up your driver in many different ways, we provide these
additional functions that you would call from your driver and task level to allow for
a receive task, transmit task, and send complete task or to poll the device driver.
The use of these functions is optional (depending on your environment):

• tfNotifyInterfaceIsr
• tfNotifyInterfaceTask (may be used in addition to tfNotifyInterfaceIsr)
• tfCheckReceiveInterface
• tfInterfaceSetOptions
• tfCheckXmitInterface
• tfCheckSendInterface
• tfWaitReceiveInterface (only if TM_TASK_RECV is defined)
• tfWaitXmitInterface (only if TM_TASK_XMIT is defined)
• tfWaitSentInterface (only if TM_TASK_SEND is defined)

tfRecvInterface is used to move received data into the stack, and
tfSendCompleteInterface is used to notify the stack that data has been sent. The
use of these functions is required:

• tfRecvInterface
• tfSendCompleteInterface

tfXmitInterface, and tfInterfaceSpinLock are used only if the user uses a separate
transmit task to send packets in the context of the transmit task, and to let the
separate transmit task yield the CPU from the device driver send function while
waiting for the device to be ready to transmit.

• tfXmitInterface
• tfInterfaceSpinLock

Integrating into Your Environment

4.41

tfInterfaceSetOptions is used by the user to set interface specific options, such
as turning on a transmit task for that interface, or making tfRecvInterface copy
device driver buffers whose size are below a specified option threshold., as
outlined below

• tfInterfaceSetOptions

tfUseInterfaceXmitQueue, and tfIoctlInterface are called by the user when he
wishes to use a transmit queue to queue the buffers to a Turbo Treck device driver
transmit buffer queue, as opposed to using the overhead of a transmit task. Note
that the 2 methods are exclusive. You need to decide whether you want to use a
transmit queue, or a transmit task, or none of the above. In addition, you cannot use
a device driver transmit queue for a serial device interface (i.e with SLIP, or PPP).

• tfUseInterfaceXmitQueue (only for non serial devices, and with no
transmit task)

• tfIoctlInterface

Here is a summary of functions that you may have to write in your device driver:

• driverOpen (Optional)
• driverClose (Optional)
• driverIoctl (Optional)
• driverGetPhysicalAddress (Only for Ethernet)
• driverSend
• driverReceive
• driverFreeReceiveBuffer (Optional)
• driverIsrHandler (Optional)

For Ethernet device drivers, The Turbo Treck stack provides the following additional
optional functions:

• tfGetEthernetBuffer
• tfFreeDriverBuffer

For all device drivers, the Turbo Treck stack provides the following additional
functions:

• tfGetDriverBuffer (More general than tfGetEthernetBuffer)
• tfFreeDriverBuffer

Treck Real-Time TCP/IP User’s Manual

4.42

Some Ethernet chips (for example the Crystal LAN (cs8900)) won’t dismiss a receive
interrupt, until the data is copied. If this is the case, you will need to get a buffer
from within the ISR, to copy the data into. The Turbo Treck stack does provide a set
of tools to allow you to get a Turbo Treck buffer from within the ISR:

• tfPoolCreate
• tfPoolIsrGetBuffer
• tfPoolReceive
• tfPoolDelete

Note: Calling tfPoolIsrGetBuffer() effectively removes a Turbo Treck buffer
from the available pool of buffers. A call to tfRecvInterface() will return that
buffer to the pool, but only if the flag TM_POOL_REFILL_IN_LINE was
specified in the call to tfPoolCreate() when allocating the pool. Otherwise, all
of the Turbo Treck pool buffers will get used up, and your device driver won’t
be able to receive any more packets. You can also refill the Treck buffer pool
by periodically calling tfIoctlInterface() and specifying the flag
TM_DEV_IOCTL_REFILL_POOL_FLAG. It is recommended that when
using the Turbo Treck buffer pool, you use both methods to refill the pool.

Tip: You will only be using a subset of the functions listed on this page. You
will find that the hardest part about the device driver having to read and
interpret the device data sheet. A key thing to remember here is that it is easier
than it looks. Just take it one step at a time, and before you know it you will
have your device driver up and running!

tfNotifyInterfaceIsr, tfNotifyInterfaceTask, tfCheckReceiveInterface,
tfWaitReceiveInterface, and tfRecvInterface Functions

This group of functions is used to allow the user to notify the stack that a
receive complete event has occurred, so that the event can be processed at main/
task level instead of from the ISR. In other words, the first four functions are
used to tell the user when to call tfRecvInterface. tfRecvInterface may NOT be
called directly from an interrupt handler. The tfNotifyInterfaceIsr function is
used to notify the stack from an ISR that there is data waiting to be received. The
tfNotifyInterfaceTask function is used to notify the stack from a task that there
is data waiting to be received. Usually, only tfNotifyInterfaceIsr is needed. On
some occasions, there is a need to let the stack know that there is more data to be
received in the context of a task (instead of an ISR), and this is the reason
tfNotifyInterfaceTask is provided. The tfCheckReceiveInterface function is
used to poll the device layer for receive events. The tfWaitReceiveInterface
function is used to “block” a task until the event has occurred. You must choose
if you want a task to block until data has been received or poll to see if data has
been received. The choice that you make defines which of the functions
(tfWaitReceiveInterface or tfCheckReceiveInterface) that you will use.

Integrating into Your Environment

4.43

Note: tfNotifyInterfaceIsr (and/or tfNotifyInterfaceTask) need to be used
whether the user chooses to use tfCheckReceiveInterface (polling method), or
tfWaitReceiveInterface (pending method). If you do not have an RTOS you
cannot use fWaitReceiveInterface. If you do have an RTOS, you can use
tfWaitReceiveInterface, but only if you define the TM_TASK_RECV macro in
trsystem.h.

Note: Our device driver interface does NOT allow you to process packets
directly from an ISR. The major reason that we do not allow this is because
our stack is designed for real-time systems. Under real-time constraints, we
need to keep interrupt latency to a minimum.

 It is not required to use the functions tfNotifyInterfaceIsr, (or/and
tfNotifyInterfaceTask), tfCheckReceiveInterface and tfWaitReceiveInterface as
long as you can guarantee that the tfRecvInterface call is made when there are
packets to be received from the device driver. Remember, tfRecvInterface may
not be called from an interrupt handler.

An example of using these calls for receive processing from a separate task is as
follows:

void recvTask(void)
{
 while(1)
 {
/* Wait for the receive event from an ISR */
 tfWaitReceiveInterface (myInterfaceHandle);
/* Move the data into the stack */
 tfRecvInterface (myInterfaceHandle);
 }
}

An example of using these calls for receive processing from a main line loop is as
follows:

void main(void)
{
 ttUserInterface interfaceHandle;
 int errorCode;

 errorCode = tfStartTreck();
 treckStarted = 1;
/* Other main processing, like adding, and opening an interface
*/
 .
 .
 .
 for (;;)

Treck Real-Time TCP/IP User’s Manual

4.44

 {

/* Check if Turbo Treck timers have expired */
 tfTimerExecute();
/* Check for received packets */
 if (tfCheckReceiveInterface(myInterfaceHandle) ==
 TM_ENOERROR)
 {
/*
 * Call the stack to move the data from the driver
 * and process it
 */
 tfRecvInterface (myInterfaceHandle);
 }
/* Application code */
 }
}

An example ISR handler for both of the methods would look something like this:

deviceIsrHandler(void)
{
 int receivedPacketCount;
/*
 * Store number of packets ready to be received in
 * receivedPacketCount.
 */
/*
 * Notify the stack that data is waiting to be
 * processed
 */
 tfNotifyInterfaceIsr(myInterfaceHandle,
 receivedPacketCount, 0, 0, 0UL);
}

Integrating into Your Environment

4.45

tfRecvInterface, and tfInterfaceSetOptions functions
The Turbo Treck tfRecvInterface function will process incoming data. If
incoming data is a PING echo request, this function will generate, and send the
reply in the context of the receive task. If incoming data is for a user application
socket, then the tfRecvInterface function will process the incoming data, and
then will queue the buffer (containing the user application data) in the
application socket receive queue. The problem is that on a non-serial device, the
device driver receive buffers will be tied up in the socket receive queue, until the
application actually recv the data. Typically a device driver will have pre-
allocated maximum size Ethernet packet, and if there is little data in each Ethernet
frame, this could end up consuming a lot of memory. To fix this, two techniques
are used:

1. Copy at the socket receive queue level:
If there is no data in the application socket receive queue, the device driver
buffer will be queued. If there is a buffer already queued in the application socket
receive queue, by default the Turbo Treck stack will attempt to copy to a new
buffer (for UDP), or to append to the previous buffer (for TCP), and free the
device driver buffer. By default the Turbo Treck stack will attempt to do so only if
the ratio of the allocated block size to the buffer size is at or above 4 (i.e if the
data uses less than, or 25 % of the allocated block). However, if the device driver
recv function gives back a driver buffer, which is not a Turbo Treck buffer, then
the Turbo Treck stack won’t know the block allocation size. In that case, the
Turbo Treck stack

will assume that the block allocation size is the same as the data size, and no
copy will take place, unless the user changes the default ratio to 1. The user can
change this ratio, using the per socket setsockopt function. For example to
change the ratio to 2

int optionValue;
optionValue = 2;
errorCode = setsockopt(socketDescriptor, SOL_SOCKET,
TM_SO_RCVCOPY,
 &optionValue, sizeof(int));

Treck Real-Time TCP/IP User’s Manual

4.46

2. Copy inside tfRecvInterface before processing the data (disallowed for PPP
or SLIP interfaces):
The user can set an interface option, so that the device driver buffer can get
copied into a new buffer, if the device driver buffer data size is below a
configurable threshold. To set that option to 64 bytes for example:

short optionValue;
optionValue = 64; /* Copy only if size is below or at 64 bytes
*/
errorCode = tfInterfaceSetOptions(myInterfaceHandle,
 TM_DEV_OPTIONS_RECV_COPY,
 &optionValue,
 sizeof(short));

Note: This option is not allowed on a PPP, or SLIP interface, since PPP, or
SLIP will copy the buffer into a new buffer while processing the incoming
data. So there is no need to copy the data an extra time.

tfInterfaceSetOptions, tfCheckXmitInterface, tfWaitXmitInterface,
tfXmitInterface, and tfInterfaceSpinLock Functions
This group of functions is used to allow synchronization between the user
application sending threads, and a separate Turbo Treck user transmit task. They
are not needed if the user does not wish to use a dedicated TurboTreck user
transmit task to send data to the device driver. The tfCheckXmitInterface, or
tfWaitXmitInterface function is used to tell the user when to call
tfXmitInterface. The tfCheckXmitInterface function is used to poll for packets
queued to the device send queue. The tfWaitXmitInterface function is used to
“block” the transmit task until one or more packets have been queued to the
device send queue. You must choose if you want a task to block until, or to poll
to see if a packet has been queued to the send queue. The choice that you make
defines which of the functions (tfWaitXmitInterface or tfCheckXmitInterface)
that you will use.

Integrating into Your Environment

4.47

Note: After having initialized the stack, the user need to call
tfInterfaceSetOptions once with the TM_DEV_OPTIONS_XMIT_TASK
option, to let the Turbo Treck stack know that a separate transmit task is used,
whether the user chooses to use tfCheckXmitInterface (polling method), or
tfWaitXmitInterface (pending method). If you do not have an RTOS you
cannot use tfWaitXmitInterface. If you do have an RTOS, you can use
tfWaitXmitInterface but only if you define the TM_TASK_XMIT macro in
trsystem.h.

The user will call the tfXmitInterface function, from the Turbo Treck user transmit
task to send the next packet in the device send queue to the device driver. The
device driver send is only called by tfXmitInterface, and thereby in the context of
the Turbo Treck user transmit task. The user will call tfInterfaceSpinLock from his
device driver send in a loop while waiting for the device to be ready to transmit the
buffer that the Turbo Treck stack wishes to send. tfInterfaceSpinLock will release
the Turbo Treck device driver lock, and yield the CPU, allowing other tasks to run
and allowing, for example, the recv task to get the Turbo Treck device driver lock,
and therefore allowing the recv task to access the device driver recv routine. Note
that tfInterfaceSpinLock can only be called from the device driver send, and only
when a transmit task is used.

An example of using these calls to transmit packets from a separate task is as
follows:
ttUserInterface myInterfaceHandle;

 void main(void)
{
 int errorCode;
 short optionValue;

 errorCode = tfStartTreck();
 treckStarted = 1;
/* Other main processing, like adding an interface */
 .
 .

 if (errorCode == TM_ENOERROR)
 {
 optionValue = 1; /* turn option on */
 errorCode = tfInterfaceSetOptions(myInterfaceHandle,
 TM_DEV_OPTIONS_XMIT_TASK,
 &optionValue,
 sizeof(short));
 }
/* Start a timer task */
/* Start the receive task for my interface handle */
/* Start the transmit task for my interface handle */
 .
 .
/* Other main processing, like opening the interface */

Treck Real-Time TCP/IP User’s Manual

4.48

 .
 .

}

void xmitTask(void)
{
 while(1)
 {
/* Wait for the post from the Turbo Treck stack */
 tfWaitXmitInterface (myInterfaceHandle);
/* Move the data from the stack to the device driver send
 * function
 */
 tfXmitInterface (myInterfaceHandle);
 }
}

An example of using these calls to transmit the packets from a main line loop is as
follows:

void main(void)
{
 ttUserInterface interfaceHandle;
 int errorCode;
 short optionValue;

 errorCode = tfStartTreck();
 treckStarted = 1;
/* Other main processing, like adding an interface */
 .
 .
 if (errorCode == TM_ENOERROR)
 {
 optionValue = 1; /* turn option on */
 errorCode = tfInterfaceSetOptions(interfaceHandle,
 TM_DEV_OPTIONS_XMIT_TASK,
 &optionValue,
 sizeof(short));
 }
/*
 * Other main processing, like installing a timer ISR to make
 * sure that tfTimerUpdateIsr is called periodically, and opening
 * the interface.
 */
 .
 .
 for (;;)
 {
/* Check if Turbo Treck timers have expired */
 tfTimerExecute();
/* Check for received packets */
 if (tfCheckReceiveInterface (myInterfaceHandle) ==
 TM_ENOERROR)
 {

Integrating into Your Environment

4.49

/*
 * Call the stack to move the data from the driver
 * and process it
 */
 tfRecvInterface (myInterfaceHandle);
 }

/* Check for packets to send */
 if (tfCheckXmitInterface (myInterfaceHandle) ==
 TM_ENOERROR)
 {
/*

 * Call the stack to move the data from the Turbo Treck stack to
 * the device driver send function.
 */
 tfXmitInterface (myInterfaceHandle);
 }
 }
}

tfUseInterfaceXmitQueue, tfIoctlInterface Functions (only for non serial devices)
If you do not want the overhead of a transmit task to send data to the device driver,
then you can use a Turbo Treck device transmit queue interface. This method
allows the driver to return an error, in case the chip is not ready to transmit. In that
case a pointer to the buffer that could not be transmitted (along with its length, and
flag) is stored in an empty slot, in the Turbo Treck device transmit queue. The
device transmit queue should be big enough to hold pointers to all the buffers that
will be sent by the application. The size of the data sent by an application is limited
by the socket send queue size. So, an interface transmit queue should be big
enough to hold pointers to buffers sent from all the application sockets through
that particular interface. The space allocation overhead for a x entries device transmit
queue is 12 + x * 8 bytes. So for a device transmit queue containing 1000 slots, the
overhead is 8012 bytes.

What happens if the interface transmit queue is not big enough?
 If the device transmit queue is not big enough to hold all the buffer pointers that
the device driver could not send, the Turbo Treck stack will drop the packets
corresponding to the buffers that could not be queued. If the user uses the device
driver scattered send capability, some Ethernet frames could therefore be partially
sent. In that case, the Turbo Treck stack will ensure that at least a minimum Ethernet
size packet will be sent.

Re-transmission of buffers that have been queued to the device transmit queue.
If a new buffer is being sent, and the device transmit queue is not empty, the
Turbo Treck stack will first try and empty the device transmit queue. If it fails to
empty it completely, then it will try to queue the current buffer to the device
transmit queue, storing the buffer pointer, data length and flag in the next
available slot at the end of the Turbo Treck device transmit queue. Also when

Treck Real-Time TCP/IP User’s Manual

4.50

fSendCompleteInterface is called, the Turbo Treck stack will try and empty the
device transmit queue, but only if tfSendCompleteInterface is not called from
the device driver send function to avoid recursion. Also the user should call
tfIoctlInterface periodically with the TM_DEV_IOCTL_EMPTY_XMIT_FLAG
flag to try and flush the Turbo Treck device transmit queue.

Note: Using a Turbo Treck device transmit queue is not allowed for a SLIP or
PPP serial device interface, because the SLIP or PPP link layer functions send
data to the device driver in a unique per interface buffer. Since the same per
interface buffer is being re-used, a pointer to it cannot be kept in the device
transmit queue.

Example on using a device transmit queue of a 1000 entries for a given interface:

void main(void)
{
 ttUserInterface interfaceHandle;
 int errorCode;
 short optionValue;

 errorCode = tfStartTreck();
 treckStarted = 1;
/* Other main processing, like adding an interface */
 .
 .

 if (errorCode == TM_ENOERROR)
 {

errorCode = tfUseInterfaceXmitQueue(interfaceHandle,
1000);
 }
/* Other main processing, like opening the interface */
 .
 .

}

Also every time tfTimerExecute is called, then the tfIoctlInterface function
should be called as follows:

errorCode = tfIoctlInterface(interfaceHandle,
 TM_DEV_IOCTL_EMPTY_XMIT_FLAG,
 (void TM_FAR *)0, 0);

Integrating into Your Environment

4.51
THID

Advantages Disadvantages

Transmit
Task

Calling the device driver send
is done in the context of a
separate transmit task, not in
the context of the user
application, or the recv task, or
the timer task. The transmit task
can wait inside the device
driver send function for the
device to be ready to transmit,
and can call
tfInterfaceSpinLock, allowing
other tasks to access the other
device driver functions. For
example the recv task could
access the driver recv function.

In blocking mode, extra
context switch on every packet
sent.In polling mode, extra
processing to check on packets
ready to be sent.

Tranmit
Queue

The device driver send can
return an error if it is not ready
to transmit the current buffer.
Hence the sending thread (i.e
user application task, or recv
task, or timer task) does not
have to wait inside the device
driver send function for the
device to be ready to transmit.

Extra memory required.One
extra function call required in
the send path.Cannot be used
with a SLIP or PPP interface.

No Transit
Task, No
Transmit

Queue

No overhead. The sending thread (i.e user
application task, or recv task,
or timer task) has to wait in a
busy loop inside the device
driver send function for the
device to be ready to transmit.
This is minimal with an
Ethernet device. While the
sending thread is waiting, no
other task can access any other
device driver function. In
particular the recv task could
not access the driver recv
function.

Treck Real-Time TCP/IP User’s Manual

4.52

tfNotifyInterfaceIsr, tfCheckSentInterface, tfWaitSentInterface, and
tfSendCompleteInterface Functions
This group of functions is used to allow the user to notify the stack that a send
complete event has occurred, so that the event can be processed at main/task
level instead of from the ISR. In other words, the first three functions are used to
tell the user when to call tfSendCompleteInterface. tfSendCompleteInterface
may not be called directly from an interrupt handler. The tfNotifyInterfaceIsr
function is used to notify the stack from an ISR that the data buffer is not in use
by the device driver anymore. The tfCheckSentInterface function is used to poll
the device layer for “send complete” notify events. The fWaitSentInterface
function is used to “block” a task until the send complete event has been
notified. You must choose if you want a task to block until data has been sent or
poll to see if data has been sent. The choice that you make defines which of the
functions (tfCheckSentInterface or tfWaitSentInterface) that you will use.

Note: tfNotifyInterfaceIsr need to be used whether the user chooses to use
tfCheckSentInterface (polling method), or tfWaitSentInterface (pending
method). If you do not have an RTOS you cannot use fWaitSentInterface. If
you do have an RTOS, you can use tfWaitSentInterface, but only if you define
the TM_TASK_SEND macro in trsystem.h.

Tip: It is not required to use the functions tfNotifytInterfaceIsr,
tfCheckSentInterface and tfWaitSentInterface as long as you can guarantee
that the tfSendCompleteInterface call is made when the device driver has sent
the data. Remember that tfSendCompleteInterface may not be called from an
interrupt handler.

Now let’s look at send complete processing. Send complete means that the sending
frame is not in use by the driver anymore. Here is send complete processing from a
separate task:

void sendCompleteTask(void)
{
 while(1)
 {
/* Wait for the send complete event from an ISR */
 tfWaitSentInterface (myInterfaceHandle);
/*
 * Tell the stack that the driver is done with the
 * current frame
 */
 tfSendCompleteInterface(myInterfaceHandle,
 TM_DEV_SEND_COMPLETE_APP);
 }

}

Integrating into Your Environment

4.53

An example of using these calls for send complete processing from a main line loop
is as follows:

void main(void)
{
/*
 * Other main processing, like initialization, adding, opening
an
 * interface.
 */
 for (;;)
 {
/* Other main processing, like timer, recv */
 .
/* Check for sent packets */
 if (tfCheckSentInterface (myInterfaceHandle) ==
 TM_ENOERROR)
 {
/*
 * Call the stack to tell it that it owns the frame
 * now
 */
 tfSendCompleteInterface (myInterfaceHandle,
 TM_DEV_SEND_COMPLETE_APP);
 }
 }
}

An example ISR handler for both of the methods would look something like this:

void deviceIsrHandler(void)
{
 int receivedPacketCount;
 int sendCompletePacketCount
 unsigned long totalBytesSent;

/*
 * Store number of packets ready to by received in
 * receivedPacketCount.
 */
/* Store number of send complete packets in sendCompletePacketCount
 * and store total number of bytes sent in totalBytesSent.
/*
 * Notify the stack that data is waiting to be
 * processed, and that the driver has transmitted
 * some complete frames.
 */
 tfNotifyInterfaceIsr(myInterfaceHandle,
 receivedPacketCount,
 sendCompletePacketCount,
 totalBytesSent,
 0UL);

}

Treck Real-Time TCP/IP User’s Manual

4.54

Our experience tells us that it is usually best NOT to use a send complete task
that is the highest priority. The reason is that a send complete task will cause
a context switch on every sent packet. Let’s look at a couple of methods to
avoid using the send complete task.

Methods to avoid using a send complete task.
When one of the two methods outlined here is used, then tfNotifyInterfaceIsr,
tfCheckSentInterface, or tfWaitSentInterface need not be called.

Method 1: Copy the Data.
This method is less efficient than the extra context switch on large packets. For
drivers that use I/O ports to communicate with the chip, the data is already being
copied to the data to the I/O port inside the device driver send function anyways.
An example of this method is as follows:

int driverSend(ttUserInterface interfaceHandle,
 char TM_FAR *dataPtr,
 int dataLength,
 int flag)
{
 while (dataLength)
 {
/* Send to I/O Port */
 outb(*dataPtr++);
 dataLength—;
 }
/* We are done with the data pointer */
 if (flag==TM_USER_BUFFER_LAST)
 {
 tfSendCompleteInterface (interfaceHandle,
 TM_DEV_SEND_COMPLETE_DRIVER);
 }
 return TM_DEV_OKAY;

}

Method 2: In-line the Send Complete Call
In this method, in your device driver send function, look for previous sent packets
that have completed transmission, and call send complete for those packets. This
method is a little trickier. One must be careful when using this method to make sure
to also look for sent packets periodically (outside of the driver send call), in the
driver ioctl function. Otherwise, if the Turbo Treck stack creates packets faster than
the chip can process them, then a deadlock condition can occur, where the send
complete never gets called. The trquicc.c driver contains this method.

Integrating into Your Environment

4.55

Device Driver Functions that You May Need to Provide
In this section, we will describe and provide examples for the functions that you
may need to provide. In all of these functions, you can be guaranteed of single
threaded access to them (provided that you do not call any of these functions
directly). We use the internal Turbo Treck locking system to provide this facility.
Because of this, you should not need any critical sections in the device driver code,
except to protect data area that you set, or access in the ISR. Success in all of these
calls is returned to the stack via the macro TM_DEV_OKAY while failure is indicated
by TM_DEV_ERROR.

1. deviceOpen
The stack calls this optional routine to initialize the hardware (and optionally install
the ISR handler. If your driver requires pre-allocated buffers to be given to the chip,
you could pre-allocate your buffers in this function. If your hardware initializes
correctly, then you should return a success value (TM_DEV_OKAY), otherwise
you should return TM_DEV_ERROR. This routine is optional if you perform your
hardware initialization elsewhere. Example:

int myDeviceOpen(ttUserInterface interfaceHandle)
{
/* Initialize the Hardware */
 .
 .
 .
/* Install the ISR Handler Routine */
 tfKernelInstallIsrHandler(myHandlerFunctionPtr,
 myHandlerIsrLocation);
 return (TM_DEV_OKAY);
}

In addition, some chips (for example the Crystal LAN (cs8900)) won’t dismiss a
receive interrupt, until the data is copied. If this is the case, you must get a buffer
from within the ISR. The Turbo Treck stack provides a set of tools that allow you to
get a Turbo Treck buffer from within the ISR. If you want to use these Turbo Treck
tools, you must to call tfPoolCreate in the deviceOpen function. For example: we
pre-allocate a pool of ten 128-bytes small buffers, and we pre-allocate a pool of five
1518-byte big buffers. The TM_POOL_REFILL_IN_LINE flag, indicates that we
want the buffers to be re-allocated in the receive task thread.

#define TM_ID_RECV_BIG_BUFFERS 5
#define TM_ID_RECV_SMALL_BUFFERS 10
#define TM_ID_SMALL_BUFFER_SIZE 128

Treck Real-Time TCP/IP User’s Manual

4.56

int myDeviceOpen(ttUserInterface interfaceHandle)
{
 int errorCode;

/* Initialize the Hardware */
 .
 .
 .
/* Install the ISR Handler Routine */
 tfKernelInstallIsrHandler(myHandlerFunctionPtr,
 myHandlerIsrLocation);
/* Example where we pre-allocate a pool of 10 128-bytes
 * small buffers, and 5 maximum Ethernet size big buffers.
 * The TM_POOL_REFILL_IN_LINE flag, indicates that we want
 * the buffers to be re-allocated in the receive task thread.
 */
 errorCode = tfPoolCreate(interfaceHandle,
 TM_ID_RECV_BIG_BUFFERS,
 TM_ID_RECV_SMALL_BUFFERS,
 TM_ETHER_MAX_PACKET_CRC,
 TM_ID_SMALL_BUFFER_SIZE,
 0,
 TM_POOL_REFILL_IN_LINE);
 return errorCode;
}

2. deviceClose
This optional routine is called by the stack, to turn off Transmit and Receive. It can
also be used to remove the ISR. Most people do not need a close for ethernet since
the device typically stays connected. It is very useful for PPP devices.

Example:

int myDeviceClose(ttUserInterface interfaceHandle)
{
/* Turn off Ethernet reception, Disable Ethernet transmission,
 * Uninstall the ISR handler.
 */
 return (TM_DEV_OKAY);
}

If you had called tfPoolCreate in your deviceOpen function, then you will need to
call tfPoolDelete in your deviceClose function.

Example:

int myDeviceClose(ttUserInterface interfaceHandle)
{
 int errorCode;

Integrating into Your Environment

4.57

/* Turn off Ethernet reception, Disable Ethernet transmission,
 * Uninstall the ISR handler.
 */

 errorCode = tfPoolDelete(interfaceHandle);
 return errorCode;
 }

3. driverIoctl
This optional routine is used as a pass through routine in the stack in most cases.
It is normally only called when the user calls tfIoctlInterface. The flags that are
passed to tfIoctlInterface are the same as those passed to driverIoctl. The only
exception to this rule is when multicast support is needed. In this case, the Turbo
Treck stack calls this function with Turbo Treck reserved flags:
TM_DEV_SET_MCAST_LIST to give the list of multicast addresses the Ethernet
chip should receive, or TM_DEV_SET_ALL_MCAST so that the Ethernet chip
receives all multicast addresses. Normally this routine is used to periodically
refresh the receive pool and perform send completes.

Note: that flag values bigger than, or equal to 0x1000 are reserved by the
Turbo Treck stack.

Example:

int myDeviceIoctl(ttUserInterface interfaceHandle,
 int flag,
 void TM_FAR *optionPtr,
 int optionLen)
{
 int errorCode;
 switch (flag)
 {
 case REFILL_RECEIVE:
 myDriverReceiveRefill();
 errorCode=TM_DEV_OKAY;
 break;
 default:
 errorCode=TM_DEV_ERROR;
 break;
 }
 return (errorCode);
}

Treck Real-Time TCP/IP User’s Manual

4.58

If you are using the Turbo Treck stack ISR pool functions, i.e., if you had called
tfPoolCreate in your deviceOpen function, then you need to call the following
function periodically:

errorCode =tfIoctlInterface(interfaceHandle,
 TM_DEV_IOCTL_REFILL_POOL_FLAG,
 (void TM_FAR *)0,
 0);

Note that in that case tfIoctlInterface will not call your device driver ioctl function.
The pool refill will be done internally by the Turbo Treck stack.

4. driverGetPhysicalAddress
This routine is used to return the physical address of the device to the stack.
Currently it is only called for Ethernet devices. The protocol stack needs the
physical address to formulate an Ethernet frame.

Example:

int myDeviceGetPhyAddr(ttUserInterface interfaceHandle,
 char TM_FAR * physicalAddress)
{
/*
 * Get the physical address from hardware or firmware
 * Save it in Network Byte Order
 */
 tfMemCpy (physicalAddress, deviceAddress,
 TM_ETHERNET_PHY_ADDR_LEN);
 return(TM_DEV_OKAY);

}

5. driverSend
This routine is used to send the data out the network device. Since Turbo Treck
protocols support “scatter send” for devices, there is a flag that gets passed into
the device driver send routine. There are two possible values for this flag:

TM_USER_BUFFER_MORE
TM_USER_BUFFER_LAST

The flag value TM_USER_BUFFER_MORE means that there is more data to follow
for this frame.

The flag value TM_USER_BUFFER_LAST means that this is the last piece of this
frame.

If your device does not support “scatter send”, then the flag will always be set to
TM_USER_BUFFER_LAST with the exception of PPP or Slip serial devices.

Integrating into Your Environment

4.59

Ethernet devices
The Turbo Treck Ethernet, or Turbo Treck Null link layer code, will only send
scattered data if the device supports “scatter send”. If the device supports “scatter
send”, the only Ethernet scattered data frames sent by the Turbo Treck stack are
TCP packets. An Ethernet device driver does not need to copy the Turbo Treck
data, and can keep a pointer to it. The data will not be freed until
tfSendCompleteInterface is called later on by the user, when the user knows that
the packet has been transmitted.

tfSendCompleteInterface Notes
tfSendCompleteInterface may be called only once per complete frame which is
denoted by the TM_USER_BUFFER_LAST flag. Please note that this function will
operate on the frames in the order that they were delivered to your driver send
routine. If your device driver send function returns an error for a given buffer, which
has the TM_USER_BUFFER_LAST flag set, then you do not need to call
tfSendCompleteInterface for that buffer. In that case, if a Turbo Treck device
transmit queue is used, the Turbo Treck stack will try and queue the buffer to the
device transmit queue, and try to send it later. If it fails to queue the buffer to the
device transmit queue, or if there is no device transmit queue, then the Turbo Treck
stack will remove the corresponding packet from the send queue, and free it.

PPP or SLIP serial devices
The Turbo Treck PPP link layer code, and Turbo Treck SLIP link layer code will
send scattered data to SLIP or PPP serial devices. This is because of the PPP
asynchronous byte stuffing or because of SLIP escaping special characters. The
Turbo Treck PPP link layer code, and Turbo Treck SLIP link layer code will copy the
stuffed bytes, or escaped bytes, along with the packet bytes, into a single
intermediate buffer. That single intermediate buffer will be repeatedly sent to the
driver when it is full, or when the end of the packet has been reached. By default, the
intermediate buffer size is one byte. Note that the Turbo Treck PPP link layer code,
or Turbo Treck SLIP link layer code, will re-use the same intermediate buffer, so in a
serial device driver send, you need to copy the buffer data immediately. If your
serial device driver can handle more than one byte at a time, you can change the size
of the intermediate buffer being sent, with tfPppSetOption for a PPP link layer, or
tfSlipSetOptions for a SLIP link layer. You can change the size of the SLIP intermediate
buffer at any time, and the change will take effect immediately. But you need to
change the size of the PPP intermediate buffer before opening the interface.
For example to change the intermediate SLIP send buffer size to 1500, you can call:
unsigned short optionValue;
optionValue = 1500;
errorCode = tfSlipSetOptions(interfaceHandle,
 TM_SLIP_OPT_SEND_BUF_SIZE,
 (void TM_FAR *)&optionValue,
 sizeof(unsigned short));

To change the intermediate PPP send buffer size to 1500 for example, you need to
call (before calling tfOpenInterface):

Treck Real-Time TCP/IP User’s Manual

4.60

unsigned short optionValue;
optionValue = 1500;
errorCode = tfPppSetOption(interfaceHandle,
 TM_PPP_PROTOCOL, 0
 TM_PPP_SEND_BUFFER_SIZE,
 (const char TM_FAR *)&optionValue,

 sizeof(unsigned short));

Note: You must only call send completes for the piece of data that has the
TM_USER_BUFFER_LAST flag set to guarantee that only ONE send
complete per frame is issued!

Example:

int myDeviceSend(ttUserInterface interfaceHandle,
 char TM_FAR *dataPtr,
 int dataLength,
 int flag)
{
 while (dataLength)
 {
/* Send to I/O Port */
 outb(MY_DEVICE_PORT, *dataPtr++);
 dataLength—;
 }

/* We are done with the frame */
 if (flag == TM_USER_BUFFER_LAST)
 {
 tfSendCompleteInterface (interfaceHandle,

 TM_DEV_SEND_COMPLETE_DRIVER);
 }
 return TM_DEV_OKAY;

}

6. driverReceive
In this routine, a received packet is passed back into the protocol stack. The stack
calls this routine to retrieve a frame from the device driver. You can use one of our
buffers to store the data from the driver into, or you can use your own buffer.

Integrating into Your Environment

4.61

Special Ethernet Considerations for the driverReceive routine:
You MUST return an entire frame, as the stack does not support “Gather Read”.

On RISC processors, you should be careful that the IP header will be on a four byte
boundary. Since the Ethernet header is 14 bytes long, this implies that the start of
the Ethernet buffer should be on a 2-bytes boundary, but not 4-byte
boundary. If you use our function tfGetEthernetBuffer you are guaranteed that
this will be the case.

If you decide not to use tfGetEthernetBuffer with an Ethernet device, you should
(for optimum performance) make sure the Ethernet buffer is aligned on a two-byte
(NOT FOUR BYTE) boundary.

Ethernet Header Offsets (When Long Word Aligned)

Destination Addr Source Addr IP HeaderType
0 6 12 14

Notice that the IP Header does not start on a long word boundary. This would not
work on most RISC processors. On other processors this may result in poor
performance, however, processors such as the M68EN360 require that the received
data appear on a long word boundary. This is the why we subtract 2 bytes from the
pointer returned by tfGetEthernetBuffer in our quicc driver.

Ethernet Header Offsets (When Short Word Aligned)

Destination Addr Source Addr IP HeaderType
2 8 14 16

tfGetEthernetBuffer does this short word alignment for you. If you do not use
tfGetEthernetBuffer and allocate your own buffers, then you should verify that
they are short word aligned.

We will show examples of using your own buffer or using tfGetEthernetBuffer.

Special PPP Considerations:
For PPP you do not need to pass an entire frame back to the protocol stack. You
simply pass as much or as little as you wish, as the PPP Link Layer will determine the
framing automatically.

Treck Real-Time TCP/IP User’s Manual

4.62

An Example of using tfGetEthernetBuffer to create a buffer to store the
incoming data into:

int myDeviceReceive(ttUserInterface interfaceHandle,
 char TM_FAR * TM_FAR *dataPtr,
 int TM_FAR *dataLength,
 ttUserBufferPtr bufHandlePtr)
{
 int errorCode;
/* Get a buffer to store the data into */
 *dataPtr=tfGetEthernetBuffer (bufHandlePtr);
 if (*dataPtr == (char TM_FAR *)0)
 {
/* No memory so return an error */
 errorCode=TM_DEV_ERROR;
 }
 else
 {
/* Copy from the device driver into the buffer */
 tfMemCpy (*dataPtr,deviceRecvDataPtr,
 deviceDataLength);
/* Save the length */
 *dataLength=deviceDataLength;
/* Good return value */
 errorCode=TM_DEV_OKAY;
 }
 return(errorCode);

}

Integrating into Your Environment

4.63

An Example of using the driver’s buffer to receive a frame and passing it directly
to the protocol stack:

Notice that the *bufHandlePtr is NULL. This is how the stack knows who created
the buffer being received.

int myDeviceReceive(ttUserInterface interfaceHandle,
 char TM_FAR * TM_FAR *dataPtr,
 int TM_FAR *dataLength,
 ttUserBufferPtr bufHandlePtr)
{
/* Save the pointer to the beginning of the data */
 *dataPtr=deviceRecvDataPtr;
/* Save the length */
 *dataLength=deviceDataLength;
/* (IMPORTANT) NULL OUT THE BUFFER HANDLE */
 *bufHandlePtr=(ttUserBufferPtr)0;
 return(TM_DEV_OKAY);
}

Tip: Typically the user calls tfGetEthernetBuffer, or tfGetDriverBuffer routine
to pre-allocate the receive buffers to receive into. This way the driver (if it is
capable), can store the data directly into a protocol stack buffer. This
eliminates the extra call to the driver to free the receive buffer that the driver
passed it. The trquicc.c driver contains this method.

Special case when the user uses the Turbo Treck pool to be able to get a Turbo
Treck buffer, and to copy the received data to it within the receive ISR.
Recall that in that case, the user has called tfPoolCreate in the device driver open
function. The driver receive function is very simple. The driver receive function
could either be tfPoolReceive (i.e be the driver receive function pointer parameter
in tfAddInterface), or the driver receive function could call tfPoolReceive. For
example:

int myDeviceReceive(ttUserInterface interfaceHandle,
 char TM_FAR * TM_FAR *dataPtr,
 int TM_FAR *dataLength,
 ttUserBufferPtr bufHandlePtr)
{

return tfPoolReceive(interfaceHandle,
 dataPtr,
 dataLength,
 bufHandlePtr);
}

Treck Real-Time TCP/IP User’s Manual

4.64

7. driverFreeReceiveBuffer
This function is used ONLY if you use your own buffer allocation for the received
packets (i.e. do not use tfGetEthernetBuffer, nor tfGetDriverBuffer, nor the Turbo
Treck stack recv ISR pool functions). Since you pass a buffer to the stack (the stack
is zero copy), you will need to know when the buffer is not in use anymore. When
this happens, we call your driverFreeReceiveBuffer function to let you free or
reuse the buffer.

Example:

int myDeviceFreeReceiveBuffer(
 ttUserInterface interfaceHandle,
 char TM_FAR *dataPtr)
{
/* Free the Data here */
 return(TM_DEV_OKAY);

}

8. driverIsrHandler
The interrupt service routine only need to call the tfNotifyInterfaceIsr function, if
you use the Check or Wait functions described earlier. Normally you need to
dismiss the interrupt and notify the stack of the event that occurred. The only call
that you can make from a device interrupt handler into the protocol stack is one
tfNotifyInterfaceIsr function.

Tip: you should call tfNotifyInterfaceIsr only once per ISR, because some
RTOS on some CPU’s will re-enable interrupt when posting on an event,
therefore causing our counter update in tfNotifyInterfaceIsr to become non-re-
entrant.

Example:

void myDeviceIsrHandler(void)
{
 int recvPacketCount;
 int sendCompletePacketCount;
 unsigned long totalBytesSent;

 recvPacketCount = 0;
 sendCompletePacketCount = 0;
 totalBytesSent = 0;
/* Check for receive interrupt */
 if (receivedData)
 {
/* Accumulate number of packets ready to be received */
 recvPacketCount++;
 }
/* Check for send complete interrupt */
 if (sendComplete)

Integrating into Your Environment

4.65

 {
 /*Accumulate number of packets that have been transmitted */
 sendCompletePacketCount++;
/*Accumulate sent packet data sizes */
 totalBytesSent += packetDataSize;
 }
/* Call this function only once */
 tfNotifyInterfaceIsr(myInterfaceHandle,
 receivedPacketCount,
 sendCompletePacketCount,
 totalBytesSent,
 0UL);

/* Dismiss the interrupt */
}

Special case when the user uses the Turbo Treck pool to be able to get a
Turbo Treck buffer, and to copy the received data to it within the receive ISR.

Recall that in that case, the user has called tfPoolCreate in the device driver open
function. The user calls tfPoolIsrGetBuffer inside the ISR, to get a pre-allocated
Turbo Treck buffer from the Turbo Treck pool, so that the incoming network data
can be copied inside the ISR.

Example:
/* myInterfaceHandle initialized in deviceOpen */
static ttUserInterface myInterfaceHandle;

void myDeviceIsrHandler(void)
{
 int recvPacketCount;
 int recvPacketLength;
 int sendCompletePacketCount;
 unsigned long totalBytesSent;
 char TM_FAR * dataPtr;

 recvPacketCount = 0;
 sendCompletePacketCount = 0;
 totalBytesSent = 0;
/* Check for receive interrupt */
 if (receivedData)
 {
/* Retrieve the packet length into recvPacketLength */

/* Get a Turbo Treck buffer from the ISR */

 dataPtr = tfPoolIsrGetBuffer(myInterfaceHandle,
 recvPacketLength);
 if (dataPtr != (char TM_FAR *)0)
 {

/* Copy the data into the Turbo Treck buffer pointed to by dataPtr
*/
/* Accumulate number of packets ready to be received */

Treck Real-Time TCP/IP User’s Manual

4.66

 recvPacketCount++;

 }
 else

 {
/* Copy the data into a scratch buffer */
 }
 }
/* Check for send complete interrupt */
 if (sendComplete)
 {
 /*Accumulate number of packets that have been transmitted */
 sendCompletePacketCount++;
/*Accumulate sent packet data sizes */
 totalBytesSent += packetDataSize;
 }
/* Call this function only once */
 tfNotifyInterfaceIsr(myInterfaceHandle,
 receivedPacketCount,
 sendCompletePacketCount,
 totalBytesSent,
 0UL);

/* Dismiss the interrupt */

}

Integrating into Your Environment

4.67

Further Device Driver Modifications to allow a device driver
to be shared by several Ethernet Interfaces
Modify your device driver as follows, to allow a device driver to be shared by
several Ethernet interfaces.
Summary of Device Driver API’s that are provided to allow a device
driver to be shared by several Ethernet interfaces

s'IPArevirDeciveD desUerehW

,eldnaHecafretniecafretnIresUtt(retnioPerotSeciveDfttni
;)retnioPrevirDecivedrtPdioVtt

neporevirdeciveD
noitcnuf

;)eldnaHecafretniecafretnIresUtt(retnioPraelCeciveDfttni esolcrevirdeciveD
noitcnuf

;)eldnaHecafretniecafretnIresUtt(retnioPteGeciveDftrtPdioVtt revirdecivedynA
noitcnuf

Device driver open function
First, make sure that you move all device driver local variables to a structure.
In the open function, allocate such a structure, and give the pointer to the Turbo
Treck TCP/IP stack, so that it can be stored on the interface, i.e.,
errorCode = tfDeviceStorePointer(interfaceHandle,
deviceDriverPointer);

Device driver close function
In the device driver close function, call tfDeviceClearPointer to dissociate the
device driver structure from the interface handle.
deviceDriverPointer = tfDeviceClearPointer(interfaceHandle);
Then, if the returned deviceDriverPointer is non-null, free the allocated structure
pointed to by deviceDriverPointer.
Any device driver function
When the device driver needs access to local structure, tfDeviceGetPointer
should be called. Given an interface handle, tfDeviceGetPointer will retrieve the
pointer to the device driver structure:
deviceDriverPointer = tfDeviceGetPointer(interfaceHandle);

It will return a non-zero pointer on success.

Alternatively the following macro can be used to retrieve the pointer:
deviceDriverPointer = tm_device_get_pointer(interfaceHandle);

Treck Real-Time TCP/IP User’s Manual

4.68

Device driver ISR Handler
The user should keep a global mapping between an interrupt vector, and
corresponding interface handle so that the user can retrieve the corresponding
device driver pointer, with the tfDeviceGetPointer API.

Integrating into Your Environment

4.69

Adding and Configuring your New Device Driver
Now that you have your device driver code, you need to tell the protocol stack
about it. There are two calls to inform the stack about your driver. These calls
should be made after you have called tfStartTreck and before any sockets calls.
These two calls are comprised of an add (tfAddInterface) and open
(tfOpenInterface).

The following example shows how to inform the protocol stack of the new device
driver.
{
/* Location to store Link Layer Handle into */
 ttUserLinkLayer ethernetLinkLayer;

/* Location to save Interface Handle into */
 ttUserInterface myInterfaceHandle;

 ethernetLinkLayer=tfUseEthernet ();

 myInterfaceHandle = tfAddInterface (
/* name of the device */
 “MYDEVICE.001”,
/* Link Layer to use */
 ethernetLinkLayer,
/* Open Function */
 myDeviceOpen,
/* Close Function */
 myDeviceClose,
/* Send Function */
 myDeviceSend,
/* Receive Function */
 myDeviceReceive,
/* Free a Receive Buffer Function */
 myDeviceFreeReceiveBuffer,
/* IOCTL Function */
 myDeviceIoctl,
/* Get Physical Address Function */
 myDeviceGetPhysicalAddress,
/* INT to store error (if one is returned */

 &errorCode);
/* Now open/configure the device */
 errorCode = tfOpenInterface (

/* The handle from tfAddInterface */
 myInterfaceHandle,
/* Our IP Address */
 inet_addr (“192.1.1.2”),
/* Out Netmask (Super or subnet) */
 inet_addr (“255.255.255.0”),
/* Special Flags Enable Scatter Send */
 TM_SCATTER_SEND_ENB,
/* Max buffers per frame */
 5)
}

Treck Real-Time TCP/IP User’s Manual

4.70

tfAddInterface Notes
For any functions that you did not implement for your device driver (because they
were not needed), you can pass a NULL pointer into tfAddInterface instead of
having a stub routine.

tfOpenInterface Notes

Note: tfConfigInterface has been deprecated. Please use tfOpenInterface.
tfConfigInterface will still function in your code, and may be used to configure
additional IP addresses on the same interface (multi homing).

Scattered send
Note that the flag TM_SCATTER_SEND_ENB is used to inform the protocol stack
that the device can support “Scatter Send”. If we support scatter send, we have to
tell the stack what is the maximum number of pieces that the driver can handle in
scatter send mode. If you do not use Scatter Send, then you can pass a 0 flags
value and set Max buffers per frame to be one (1).

What if I do not know my IP address / netmask, and want to retrieve them from the
net?

You can use the Turbo Treck stack BOOTP, or DHCP protocols.

Note: Please, refer to the BOOTP, or DHCP section in “Appendix B”, and to
BOOTP, or DHCP function reference calls in “Appendix A”.

Integrating into Your Environment

4.71

What if I do not know my IP address / netmask, and want to retrieve them from the
net, but do not wish to use the Turbo Treck BOOTP or DHCP protocols?

To be able to open an interface without setting an IP address in the routing table,
call tfOpenInterface, using the TM_DEV_IP_USER_BOOT flag as follows:

 errorCode = tfOpenInterface(interfaceHandle,
 0UL,
 UL,
 TM_DEV_IP_USER_BOOT,
 1);

 Note that if you device driver support scatter send, you can OR that flag to the
TM_DEV_IP_USER_BOOT flag, and change the last parameter accordingly.
You can then open a socket, and try and send data through that interface, calling
the function tfSendToInterface. tfSendToInterface is identical to sendto, but takes
2 extra arguments: the interfaceHandle as returned by tfAddInterface, and a multi
home index, 0 in our case:

toAddress.sin_addr.s_addr = 0xFFFFFFFFUL;
len = tfSendToInterface(desc, buf, 512, 0,
 (struct sockaddr TM_FAR *)(&toAddress),
 sizeof(struct sockaddr),
 interfaceHandle, 0);

You can also use the regular recvfrom on that socket. Once you have retrieved your
IP address, and netmask from the net, you can insert those values in the device and
routing table using the tfFinishOpenInterface function:

errorCode = tfFinishOpenInterface(interfaceHandle, IPAddr, mask);

Note: For more information on functions used in this section, please refer to
the “Programmers Reference” section of this manual.

Treck Real-Time TCP/IP User’s Manual

4.72

Single Send Call Send per Frame, Out of Order Send

Description
Single call to the driver send per scattered frame
By default, when the stack sends a frame scattered among different buffers,
and the device driver supports scattered send, the stack will make multiple
calls to the device driver send function (one per scattered buffer). This is
inefficient. This section describes additional APIs that have been added to the
stack in order to support a single call to the device driver send API per frame,
even when sending scattered data.

Out of Order Frame Transmission
Also, because the user might want to order frames for transmission in a different
order as transmitted by the stack, the user might want to signal out of order
frame send completion. This is not allowed with the default device driver send
interface, because the frame handle is not given to the user as a parameter, and
therefore cannot be given as a parameter to tfSendCompleteInterface.
The modified device driver send API, described in this section, now takes the
frame handle as a parameter. A new API (tfSendCompletePacketInterface) has
been added to allow the user to specify which frame has been transmitted. So
even if the user device driver does not support scattered send, a user might still
want to use the modified device driver send API described in this section, if the
user needs to signal out of order frame send completion.

Note: The modified driver send interface is not supported for point to point
link layers (such as PPP, or SLIP), and is not supported in conjunction with a
transmit queue.

TM_USE_DRV_ONE_SCAT_SEND
First, in order to allow a single call to the driver send routine for a scattered
frame, TM_USE_DRV_ONE_SCAT_SEND need to be defined in trsystem.h.

Modified driverSend
The user driverSend function API must be modified to support a single call to the
driver send routine for a scattered frame. The modified driverSend function now
takes only two parameters. The first parameter is still the interfaceHandle as
before. The second parameter is a pointer to a structure containing the informa-
tion needed to access the scattered data in a frame.

int devOneScatSendFunc (ttUserInterface
interfaceHandle,

 ttUserPacketPtr

Integrating into Your Environment

4.73

packetUPtr);

where ttUserPacketPtr is a pointer to a ttUserPacket structure.
ttUserPacket and ttUserPacketPtr are defined as follows:

typedef struct tsUserPacket

{
 struct tsUserPacket * pktuLinkNextPtr;
 tt8BitPtr pktuLinkDataPtr;
 ttPktLen pktuLinkDataLength;
 ttPktLen pktuChainDataLength;
 int pktuLinkExtraCount;
} ttUserPacket;

typedef ttUserPacket * ttUserPacketPtr;

where:

ttUserPacket fields Description
ptkuLinkNextPtr points to the next ttUserPacket

structure
pktuLinkDataPtr points to the data in the current link
pktuLinkDataLength contains the length of the data in

the current link
pktuLinkChainDataLength contains the total length of the

scattered data. Its value is ony valid
in the first link

pktuLinkExtraCount contains the number of extra links
besides the first one. Its value is
only valid in the first link.

The modified user device driver send function will loop through all the links of
the scattered frame in order to send a complete frame.

Treck Real-Time TCP/IP User’s Manual

4.74

tfUseInterfaceOneScatSend
The Turbo Treck stack need to be made aware that the modified driver send
function need to be used instead of the default driver send function.
So, after the call to tfAddInterface, and before the call to tfOpenInterface,
the user need to call tfUseInterfaceOneScatSend:

int tfUseInterfaceOneScatSend
(
ttUserInterface interfaceHandle,
ttDevOneScatSendFunc devOneScatSendFunc
);

Where devOneScatSendFunc type is defined as follows:

typedef int (*ttDevOneScatSendFuncPtr)
(
ttUserInterface interfaceHandle,
ttUserPacketPtr packetUPtr
);

After the interface is configured, this new device driver send function will be
called, where the first parameter to the device driver send function is the
interface handle as before, and the second parameter, is a pointer to the
ttUserPacket structure as described above.

Note: Once tfUseInterfaceOneScatSend has been called successfully on an
interface, the stack will always call the modified device driver send function
passed as a second parameter to tfUseInterfaceOneScatSend for that interface.

Integrating into Your Environment

4.75

Example

Modified driverSend function to support per-frame single call scattered send:

int devOneScatSendFunc(ttUserInterface interfaceHandle,
 ttUserPacketPtr packetUPtr);

User calls
The user calls tfAddInterface specifying a null device driver send function to
add the interface:

 interfaceHandle=tfAddInterface(
 "QUICC.SCC1",
 linkLayerHandle,
 tfDevEtherOpen,
 tfDevEtherClose,
 (ttDevSendFuncPtr)0,
 tfDevEtherReceive,
 (ttFreeRecvBufferFuncPtr)0,
 tfDevIoctl,
 tfDevGetPhyAddr,
 &errorCode

);

Next the user calls the new tfUseInterfaceOneScatSend API to specify the
modified device driver send function:

errorCode = tfUseInterfaceOneScatSend(
ttUserInterface interfaceHandle,
ttDevOneScatSendFunc devOneScatSendFunc
);

If the call does not fail, then the user can now call tfConfigInterface()/
tfOpenInterface to configure an IP address on the interface.
Note that tfConfigInterface/tfOpenInterface is unchanged.

 if (errorCode == TM_ENOERROR)
 {
 ipAddress=inet_addr("208.229.201.110");
 netMask=htonl(0xffffff00); /* 255.255.255.192 */
/* Config the Interface */
 errorCode=tfOpenInterface(
 interfaceHandle,
 ipAddress,
 netMask,
 TM_DEV_SCATTER_SEND_ENB,

Treck Real-Time TCP/IP User’s Manual

4.76

 5,
 0);
 }

tfSendCompletePacketInterface
The default device driver interface does not allow the user to specify which
frame have been sent by the device driver. The stack assumes that the frames
have been sent in the order of transmission to the device driver send function.
When using a the modified single call device driver send interface, the user has
the choice of either calling tfSendCompleteInterface for each frame that has
been sent out, or tfSendCompletePacketInterface specifying the frame that has
just been sent out. The later choice is useful for device driver where frames
might not be sent out in the order they were transmitted.

tfSendCompletePacketInterface is similar to tfSendCompleteInterface, but takes
the frame handle passed to the modified device driver send function as a
parameter:

void tfSendCompletePacketInterface
(
ttUserInterface interfaceHandle,
ttUserPacketPtr packetPtr,
int devDriverLockFlag
);

Limitations
The single scattered send call is not supported in conjunction with a Turbo
Treck transmit queue.

The single scattered send call is not supported on point to point link layers
such as PPP, or SLIP.

Integrating into Your Environment

4.77

Device Driver Scattered recv (“Gather Read”)

Description
By default the stack expects all data within a frame given by the user device
driver recv function to be contiguous. Some device drivers support receiving
data within a frame in scattered buffers, because it is more efficient.
The interface to the device driver recv interface can be optionally modified to
allow it.

TM_USE_DRV_SCAT_RECV
First, in order to allow a scattered device driver recv,
TM_USE_DRV_SCAT_RECV need to be defined in trsystem.h.

Modified driver recv routine
Description
The user driverRecv function API need to be modified to support giving
scattered data within a frame to the stack. As in the case of the non scattered
driver recv API, the user can choose to either use pre-allocated stack buffers, or
non-stack buffers to store the data into.

The scattered driverRecv function takes four parameters as shown below.

int devScatRecvFunc(ttUserInterface interfaceHandle,
 ttDruBlockPtrPtr uDevBlockPtrPtr,
 int * uDevBlockCountPtr,
 int * flagPtr);

devScatRecvFunc Parameters
The modified user device driver recv function will be responsible for initializing,
(*uDevBlockPtrPtr)
(*uDevBlockCountPtr)
(*flagPtr)

Parameters Meaning
interfaceHandle Initialized by the caller, as before
(*uDevBlockPtrPtr) Upon return from the device driver

scattered recv function, points to
an array of user block data of type
ttDruBlock

(*uDevBLockCountPtr) Upon return from the device driver
scattered recv contains the number
of such elements.

(*flagPtr) Upon return from the device driver

Treck Real-Time TCP/IP User’s Manual

4.78

scattered recv indicates whether the
stack owns the buffers
(TM_DEV_SCAT_RECV_STACK_BUFFER),
or whether the device driver owns
the buffers
(TM_DEV_SCAT_RECV_USER_BUFFER).

uDevLockPtrPtr
Upon retrun from the device driver scattered recv function, *uDevBlockPtrPtr
points to an array of ttDruBlock. There is one ttDruBlock per scattered buffer in
the received frame. Each ttDruBlock element contains a pointer to a user buffer, a
pointer to the beginning of the user data in the user buffer, and the user data
length in the user buffer.

ttDruBlock Fields Description
druDataPtr points to beginning of data
druDataLength indicates the data length
druBufferPtr pointer to be passed to the device

driver free function if user sets the
flag to
TM_DEV_SCAT_RECV_USER_BUFFER
in the driver recv call function.
(See *flagPtr below.)

druStackBufferPtr pointer to stack pre-allocated user
buffer if user sets the flag to
TM_DEV_SCAT_RECV_STACK_BUFFER
in the driver recv call function.
(See *flagPtr below.)

If the device driver scattered recv function sets *flagPtr to
TM_DEV_SCAT_RECV_STACK_BUFFER, then druStackBufferPtr should point
to a buffer pointed to by first parameter of either tfGetEthernetBuffer,
tfGetDriverBuffer, and the stack will be responsible for freeing that buffer, when
the stack is done processing that buffer.

If the device driver scattered recv function sets *flagPtr to
TM_DEV_SCAT_RECV_USER_BUFFER, then druBufferPtr points to a user
allocated buffer. When the stack is done processing that buffer, the stack will call
the device driver free function (as set in tfAddInterface).

The user is responsible for managing the memory containing the array of
ttDruBlock. It is guaranteed that when the stack calls the modified driver recv
function for an interface, the array of ttDruBlock previously given to the stack by
a previous call to the driver recv function for the same interface will not be
accessed anymore. So it is safe for the user to re-use the array itself, then. On the

Integrating into Your Environment

4.79

other hand, it is only safe to re-use a user allocated buffer after the device driver
free function is called.

uDevBlockCountPtr
Upon retrun from the device driver scattered recv function,
*uDevBlockCountPtr should be set to the number of ttDruBlock in the arrary
of ttDruBlock given to the stack.

flagPtr
Upon retrun from the device driver scattered recv function,
*flagPtr should be set to
TM_DEV_SCAT_RECV_STACK_BUFFER if the user used pre-allocated stack
buffers,
that the stack will be responsible for freeing.
or
TM_DEV_SCAT_RECV_USER_BUFFER if the user used its own buffers,

tfUseInterfaceScatRecv
The Turbo Treck stack need to be made aware that the modified driver recv
function need to be used instead of the default driver recv function.
So, after the call to tfAddInterface, and before the call to tfOpenInterface,
the user need to call tfUseInterfaceScatRecv:

int tfUseInterfaceScatRecv(
 ttUserInterface interfaceHandle,
 ttDevScatRecvFunc devScatRecvFunc
);

tfRecvScatInterface
Instead of calling tfRecvInterface, the user needs to call tfRecvScatInterface.
The modified device driver recv function is itself called from within
tfRecvScatInterface.

Treck Real-Time TCP/IP User’s Manual

4.80

Scattered recv contiguous length threshold used in tfRecvScatInterface
Description
tfRecvScatInterface will automatically copy up to a per device configurable
recv contiguous header length, if the data received in the first link of a
device driver scattered recv is below this threshold. In that case, a new buffer
is allocated by the stack, and the threshold number of bytes (but not more
than the total length of the buffer) is copied.

Compile time value: TM_DEV_DEF_RECV_CONT_HDR_LENGTH
Default threshold value is given by the
TM_DEV_DEF_RECV_CONT_HDR_LENGTH macro
and is by default defined to 68 for IPv4, and 88 for IPv6. It can be defined
in trsystem.h to overwrite the default value.

Run time modification using tfInterfaceSetOptions
That default threshold value can be changed at run time using the
tfInterfaceSetOptions API, with the
TM_DEV_OPTIONS_SCAT_RECV_LENGTH option.

Dealing with non contiguous network protocol headers in scattered
recv buffers, TM_RECV_SCAT_MIN_INCR_BUF
When the stack processes a received scattered buffer, it checks that the network
protocol header is contiguous at a given layer. It if is not, then it means that the
header straddles between the first buffer and consecutive buffers in the frame
If there is enough room at the end of the first of those consecutive buffers, then
the end of the header is copied there. If there is not enough room, then a new
buffer is allocated and replaces the first buffer. Data from the first buffer, plus the
end of the header is copied into the first buffer. To prevent numerous re-alloca-
tion of the first buffer while processing the network headers, we allocate the
maximum of TM_RECV_SCAT_MIN_INCR_BUF, and size of data that needs to
be contiguous. By default TM_RECV_SCAT_MIN_INCR_BUF is set to 128.
It can be defined to a different value in trsystem.h.

#define TM_RECV_SCAT_MIN_INCR_BUF 128

Integrating into Your Environment

4.81

Example
New User device driver recv function:

int tfDevEtherScatRecvFunc(
ttUserInterface interfaceHandle,

 ttDruBlockPtrPtr uDevBlockPtrPtr,
int * uDevBlockCountPtr,

 int * flagPtr);

User calls:
User calls tfAddInterface specifying a null device driver recv function:

/* Add the Interface */
 interfaceHandle=tfAddInterface(
 "QUICC.SCC1",
 linkLayerHandle,
 tfDevEtherOpen,
 tfDevEtherClose,
 tfDevEtherSend,
 (ttDevRecvFuncPtr)0,
 tfDevFreeRecvBuffer,
 tfDevIoctl,
 tfDevGetPhyAddr,
 &errorCode);

Next User calls the new tfUseInterfaceScatRecv API to specify the device
driver scattered buffer recv function:

errorCode = tfUseInterfaceScatRecv
(
ttUserInterface interfaceHandle,
ttDevScatRecvFunc tfDevEtherScatRecvFunc
);

If the call does not fail, then the user can now call tfConfigInterface/
tfOpenInterface to configure an IP address on the interface. Note that
tfConfigInterface/tfOpenInterface is unchanged.

 if (errorCode == TM_ENOERROR)
 {
 ipAddress=inet_addr("208.229.201.110");
 netMask=htonl(0xffffff00); /* 255.255.255.0 */
/* Config the Interface */
 errorCode=tfConfigInterface(
 interfaceHandle,

Treck Real-Time TCP/IP User’s Manual

4.82

 ipAddress,
 netMask,
 TM_DEV_SCATTER_SEND_ENB,
 5,
 0);
 }

Next, the user calls tfRecvScatInterface instead of tfRecvInterface.

No copy loop back driver
For testing purposes, a loop back device driver has been added below link layer
that uses single scattered device driver send calls, and scattered device
driver recv calls.

ttUserInterface tfUseScatIntfDriver
(
char * namePtr,
ttUserLinkLayer linkLayerHandle,
int * errorCode
);

In order to use this no copy loop back driver:

Add the following macros to trsystem.h:
#define TM_LOOP_TO_DRIVER

#define TM_USE_DRV_SCAT_RECV

#define TM_USE_DRV_ONE_SCAT_SEND

 replace tfAddInterface with tfUseScatIntfDriver

In the examples directory txscatlp.c and txscatdr.c, use the no copy loop back
driver.

Integrating into Your Environment

4.83

Step 10 - Testing Your New Device Driver
If you wrote your own device driver (or modified ours), you are now ready to
begin testing on the network. You will need some tools to do this correctly if you
do not already have them. Your most important tool when testing a device driver
is a network analyzer. There are many to choose from. The cost ranges from a
few hundred dollars to tens of thousands of dollars. If you are in a hurry and are
on a tight budget, we suggest that you visit the following web site.
http://www.klos.com/

At Klos Technologies, they have both Ethernet and PPP analyzers that run on a PC
under DOS for a few hundred dollars.

When testing your device driver, your analyzer is your best friend (next to the
support engineer at Turbo Treck Inc).

Things to test for:
Make sure that you are sending packets. If you are not, then make sure that
your driver’s send routine is being called. Set a break point with your debugger
and step through your drivers send routine.
Make sure receive processing is happening correctly by making sure that the
incoming IP application data arrives at the socket.
Try UDP before trying TCP. It is a simpler test and helps isolate problems.

If you are having problems:
Ensure the IP address and Netmask are set correctly.
Make sure your hardware is operating correctly.
Make sure your hardware address is correct and valid.
Make sure that tfTimerUpdate/tfTimerUpdateIsr and tfTimerExecute are being
called.
Make sure your loopback test still runs.
Make sure that you have interpreted the device user’s manual correctly.
Trying sending packets by directly calling your driver’s send routine.
Make sure that you are passing the correct parameters to the Turbo Treck
functions.
Look for compiler warnings in your code.
Make sure that you actually check the return codes of the Turbo Treck functions
that you call to ensure that an error did not occur.
Watch out for padding by the compiler. Turbo Treck data structures are
already padded and aligned on 32 bit boundaries.

Please see Appendix C for detailed driver testing and debugging information.

Treck Real-Time TCP/IP User’s Manual

4.84

Programmer’s Reference

5.1

Programmer’s Reference

Turbo Treck Real-Time TCP/IP User’s Manual

5.2

Programmer’s Reference

5.3

Programmer’s Reference
Function List

BSD 4.4 Socket API
accept
bind
connect
getpeername
getsockname
getsockopt
htonl
htons
inet_addr
inet_aton
inet_ntoa
listen
ntohl
ntohs
readv
recv
recvfrom
rresvport
select
send
sendto
setsockopt
shutdown
socket
tfClose
tfIoctl
tfRead
tfWrite
writev

Socket Extension Calls
tfBindNoCheck
tfBlockingState
tfFlushRecvQ
tfFreeDynamicMemory
tfFreeZeroCopyBuffer
tfGetOobDataOffset
tfGetSendCompltBytes
tfGetSocketError
tfGetWaitingBytes
tfGetZeroCopyBuffer
tfInetToAscii
tfIpScatteredSend
tfRawSocket
tfRecvFromto
tfRegisterIPForwCB
tfResetConnection
tfSendToFrom
tfSendToInterface
tfSocketArrayWalk
tfSocketScatteredSendTo

tfZeroCopyRecv
tfZeroCopyRecvFrom
tfZeroCopySend
tfZeroCopySendTo

Call Back Function Registration
tfRegisterSocketCB
tfRegisterSocketCBParam

Turbo Treck Initialization
tfInitTreckOptions
tfSetTreckOptions
tfStartTreck

Device/Interface API
tfAddInterface
tfAddInterfaceMhomeAddress
tfCheckReceiveInterface
tfCheckSentInterface
tfCheckXmitInterface
tfCloseInterface
tfConfigInterface
tfDeviceClearPointer
tfDeviceGetPointer
tfDeviceStorePointer
tfFinishOpenInterface
tfFreeDriverBuffer
tfGetDriverBuffer
tfGetBroadcastAddress
tfGetIfMtu
tfGetIpAddress
tfGetNetMask
tfInterfaceGetVirtualChannel
tfInterfaceSetOptions
tfInterfaceSetVirtualChannel
tfInterfaceSpinLock
tfIoctlInterface
tfNotifyInterfaceIsr
tfNotifyInterfaceTask
tfNotifyReceiveInterfaceIsr
tfNotifySentInterfaceIsr
tfOpenInterface
tfPoolCreate
tfPoolDelete
tfPoolGetIsrBuffer
tfPoolReceive
tfRecvInterface
tfRecvScatInterface
tfSendCompleteInterface
tfSendCompletePacketInterface
tfSetIfMtu
tfUnConfigInterface
tfUseInterfaceOneScatSend
tfUseInterfaceScatRecv
tfUseInterfaceXmitQueue
tfUseIntfDriver
tfUseScatIntfDriver

Turbo Treck Real-Time TCP/IP User’s Manual

5.4

tfWaitReceiveInterface
tfWaitSentInterface
tfWaitXmitInterface
tfXmitInterface

Null Link Layer API
tfUseNullLinkLayer

Ethernet API
tfGetEthernetBuffer
tfUseEthernet

SLIP API
tfGetSlipPeerIpAddress
tfSetSlipPeerIpAddress
tfSlipSetOptions
tfUseSlip

ARP/Routing TableAPI
tfAddArpEntry
tfAddDefaultGateway
tfAddMcastRoute
tfAddProxyArpEntry
tfAddStaticRoute
tfDelArpEntryByIpAddr
tfDelArpEntryByPhysAddr
tfDelDefaultGateway
tfDelProxyArpEntry
tfDelStaticRoute
tfDisablePathMtuDisc
tfGetArpEntryByIpAddr
tfGetArpEntryByPhysAddr
tfGetDefaultGateway
tfUseRip

Timer Interface API
tfTimerExecute
tfTimerUpdate
tfTimerUpdateIsr

Kernel/RTOS Interface
tfKernelCreateCountSem
tfKernelCreateEvent
tfKernelDeleteCountSem
tfKernelError
tfKernelFree
tfKernelInitialize
tfKernelInstalIsrHandler
tfKernelIsrPostEvent
tfKernelMalloc
tfKernelPendCountSem
tfKernelPendEvent
tfKernelPostCountSem
tfKernelReleaseCritical
tfKernelSetCritical
tfKernelSheapCreate
tfKernelTaskPostEvent

tfKernelTaskYield
tfKernelWarning

Compiler Library
Replacement Functions

tfMemCpy
tfMemSet
tfQsort
tfSPrintF
tfSScanF
tfStrCat
tfStrChr
tfStrCmp
tfStrCpy
tfStrCSpn
tfStrError
tfStrLen
tfStrNCmp
tStrRChr
tfStrStr
tfStrToL
tfStrToUl
tfVSPrintF
tfVSScanF

Programmer’s Reference

5.5

BSD 4.4 Socket API

accept

include <trsocket.h>

Int accept
(
Int socketDescriptor,
struct sockaddr * addressPtr,
int * addressLengthPtr
);

Function Description
The argument socketDescriptor is a socket that has been created with socket,
bound to an address with bind, and that is listening for connections after a call to
listen. accept extracts the first connection on the queue of pending connections,
creates a new socket with the properties of socketDescriptor, and allocates a new
socket descriptor for the socket. If no pending connections are present on the
queue and the socket is not marked as non-blocking, accept blocks the caller until
a connection is present. If the socket is marked as non-blocking and no pending
connections are present on the queue, accept returns an error as described below.
The accepted socket is used to send and recv data to and from the socket that it is
connected to. It is not used to accept more connections. The original socket
remains open for accepting further connections. accept is used with connection-
based socket types, currently with SOCK_STREAM.

Using select (prior to calling accept):

 It is possible to select a listening socket for the purpose of an accept by selecting
it for a read. However, this will only indicate when a connect indication is pending;
it is still necessary to call accept.

Using tfRegisterSocketCB (prior to calling accept):

Alternatively, the user could issue a tfregisterSocketCB call on the listening socket
with a TM_CB_ACCEPT event flag to get an asynchronous notification of an
incoming connection request. Again, this will only indicate that a connection
request is pending; it is still necessary to call accept after having received the
asynchronous notification.

Turbo Treck Real-Time TCP/IP User’s Manual

5.6

Parameters
Parameter Description
socketDescriptor The socket descriptor that was

created with socket and bound to
with bind and is listening for
connections with listen

addressPtr The structure to write the incoming
address into.

addressLengthPtr Initially, it contains the amount of
space pointed to by addressPtr. On
return it contains the length in
bytes of the address returned.

Returns
New Socket Descriptor or –1 on error.
If accept fails, the errorCode can be retrieved with tfGetSocketError
socketDescriptor) which will return one of the following error codes:

TM_EBADF The socket descriptor is invalid.
TM_EINVAL addressPtr was a null pointer.
TM_EINVAL addressLengthPtr was a null

pointer.
TM_EINVAL The value of addressLengthPtr was

too small.
TM_ENOBUFS There was insufficient user memory

available to complete the operation.
TM_EPERM Cannot call accept without calling

listen first.
TM_EOPNOTSUPP The referenced socket is not of type

SOCK_STREAM.
TM_EWOULDBLOCK The socket is marked as non-

blocking and no connections are
present to be accepted.

Programmer’s Reference

5.7

bind

#include <trsocket.h>

int bind
(
int socketDescriptor,
const struct sockaddr *addressPtr,
int addressLength
);

Function Description
bind assigns an address to an unnamed socket. When a socket is created with
socket, it exists in an address family space but has no address assigned. bind
requests that the address pointed to by addressPtr be assigned to the socket.
Clients do not normally require that an address be assigned to a socket. However,
servers usually require that the socket be bound to a “well known” address. The
port number must be less than 32768 (TM_SOC_NO_INDEX), or could be 0xFFFF
(TM_WILD_PORT). Binding to the TM_WILD_PORT port number allows a server
to listen for incoming connection requests on all the ports. Multiple sockets cannot
bind to the same port with different IP addresses (as might be allowed in UNIX).

Parameters

Parameter Description
socketDescriptor The socket descriptor to assign an

IP address and port number to.
addressPtr The pointer to the structure

containing the address to assign.
addressLength The length of the address structure.

Returns
Value Meaning
0 Success
-1 An error occurred

bind can fail for any of the following reasons:

TM_EADDRINUSE The specified address is already in
use. TM_EBADF socketDescriptor
is not a valid descriptor.

TM_EINVAL One of the passed parameters is
invalid or socket is already bound.

Turbo Treck Real-Time TCP/IP User’s Manual

5.8

connect

#include <trsocket.h>

int connect
(
int socketDescriptor,
const struct sockaddr * addressPtr,
int addressLength
);

Function Description
The parameter socketDescriptor is a socket. If it is of type SOCK_DGRAM, connect
specifies the peer with which the socket is to be associated; this address is the
address to which datagrams are to be sent if a receiver is not explicitly designated;
it is the only address from which datagrams are to be received. If the socket
socketDescriptor is of type SOCK_STREAM, connect attempts to make a connection
to another socket (either local or remote). The other socket is specified by addressPtr.
addressPtr is a pointer to the IP address and port number of the remote or local
socket. If socketDescriptor is not bound, then it will be bound to an address
selected by the underlying transport provider. Generally, stream sockets may
successfully connect only once; datagram sockets may use connect multiple times
to change their association. Datagram sockets may dissolve the association by
connecting to a null address.

Note that a non-blocking connect is allowed. In this case, if the connection has
not been established, and not failed, connect will return TM_SOCKET_ERROR,
and tfGetSocketError will return TM_EINPROGRESS error code indicating that
the connection is pending. connect should never be called more than once.
Additional calls to connect will fail with TM_EALREADY error code returned by
tfGetSocketError.

Non-blocking connect and select:
After issuing one non-blocking connect, the user can call select with the write
mask set for that socket descriptor to check for connection completion. When
select returns with the write mask set for that socket, the user can call getsockopt
with the SO_ERROR option name. If the retrieved pending socket error is
TM_ENOERROR, then the connection has been established, otherwise an error
occurred on the connection, as indicated by the retrieved pending socket error.

Non-blocking connect and tfRegisterSocketCB:
Alternatively, the user could have issued a tfRegisterSocketCB call with
TM_CB_CONNECT_COMPLT|TM_CB_SOCKET_ERROR event flags prior to
issuing a non-blocking connect, to get an asynchronous notification of the
completion of the connect call. If the TM_CB_SOCKET_ERROR flag is set when

Programmer’s Reference

5.9

the call back function is called, the user can retrieve the pending socket error by
calling getsockopt with the SO_ERROR option name.

Non-blocking connect and polling:
Alternatively, after the user issues a non-blocking connect call that returns
TM_SOCKET_ERROR, the user can poll for completion, by calling
tfGetSocketError until tfGetSocketError no longer returns TM_EINPROGRESS.

If connect fails, the socket is no longer usable, and must be closed. connect
cannot be called again on the socket.

Parameters
Parameter Description
socketDescriptor The socket descriptor to assign a

name (port number) to.
addressPtr The pointer to the structure

containing the address to connect
to for TCP. For UDP it is the default
address to send to and the only
address to receive from.

addressLength The length of the address structure.
Returns

Value Meaning
 0 Success
-1 An error occurred

connect can fail for any of the following reasons:

TM_EADDRINUSE The socket address is already in
use.

TM_EADDRNOTAVAIL The specified address is not
available on the remote / local
machine.

TM_EPFNOSUPPORT Addresses in the specified address
family cannot be used with this
socket

TM_EINPROGRESS The socket is non-blocking and the
current connection attempt has not
yet been completed.

TM_EALREADY connect has already been called on
the socket. Only one connect call is
allowed on a socket.

Turbo Treck Real-Time TCP/IP User’s Manual

5.10

TM_EBADF socketDescriptor is not a valid
descriptor.

TM_ECONNREFUSED The attempt to connect was
forcefully rejected. The calling
program should close the socket
descriptor, and issue another
socket call to obtain a new
descriptor before attempting
another connect call.

TM_EPERM Cannot call connect after listen call.
TM_EINVAL One of the parameters is invalid
TM_EHOSTUNREACH No route to the host we want to

connect to. The calling program
should close the socket descriptor,
and should issue another socket
call to obtain a new descriptor
before attempting another connect
call.

TM_ETIMEDOUT Connection establishment timed
out, without establishing a
connection. The calling program
should close the socket descriptor,
and issue another socket call to
obtain a new descriptor before
attempting another connect call.

Programmer’s Reference

5.11

getpeername

#include <trsocket.h>

int getpeername
(
int socketDescriptor,
Struct sockaddr * fromAddressPtr,
int * addressLengthPtr
);

Function Description
This function returns the IP address / Port number of the remote system to which
the socket is connected.

Parameters

Parameter Description
socketDescriptor The socket descriptor that we wish

to obtain information about.
fromAddressPtr A pointer to the address structure

that we wish to store this
information into.

addressLengthPtr The length of the address structure.

Returns
Value Meaning
0 Success
-1 An error occurred

getpeername can fail for any of the following reasons:

TM_EBADF socketDescriptor is not a valid
descriptor.

TM_ENOTCONN The socket is not connected.
TM_EINVAL One of the passed parameters is not

valid.

Turbo Treck Real-Time TCP/IP User’s Manual

5.12

getsockname

#include <trsocket.h>

int getsockname
(
int socketDescriptor,
struct sockaddr * myAddressPtr,
int * addressLengthPtr
);

Function Description
This function returns to the caller the Local IP Address/Port Number that we are
using on a given socket.

Parameters

Parameter Description
socketDescriptor The socket descriptor that we wish

to inquire about.
myAddressPtr The pointer to the address structure

where the address information will
be stored.

addressLengthPtr The length of the address structure.

Returns
Value Meaning
 0 Success
-1 An error occurred

getsockname can fail for any of the following reasons:
TM_EBADF socketDescriptor is not a valid

descriptor.
TM_EINVAL One of the passed parameters is not

valid.

Programmer’s Reference

5.13

getsockopt

#include <trsocket.h>

int getsockopt
(
int socketDescriptor,
int protocolLevel,
int optionName,
char * optionValuePtr,
int * optionLengthPtr
);

Function Description
getsockopt is used retrieve options associated with a socket. Options may exist at
multiple protocol levels; they are always present at the uppermost “socket” level.
When manipulating socket options, the level at which the option resides and the
name of the option must be specified. To manipulate options at the “socket” level,
protocolLevel is specified as SOL_SOCKET. To manipulate options at any other
level, protocolLevel is the protocol number of the protocol that controls the option.
For example, to indicate that an option is to be interpreted by the TCP protocol,
protocolLevel is set to the TCP protocol number. For getsockopt, the parameters
optionValuePtr and optionLengthPtr identify a buffer in which the value(s) for the
requested option(s) are to be returned. For getsockopt, optionLengthPtr is a value-
result parameter, initially containing the size of the buffer pointed to by
optionValuePtr, and modified on return to indicate the actual size of the value
returned. optionName and any specified options are passed un-interpreted to the
appropriate protocol module for interpretation. The include file <trsocket.h> contains
definitions for the options described below. Options vary in format and name.
Most socket-level options take an int for optionValuePtr. SO_LINGER uses a struct
linger parameter that specifies the desired state of the option and the linger interval
(see below). struct linger is defined in <trsocket.h>. struct linger contains the
following members:

l_onoff on = 1/off = 0
l_linger linger time, in seconds
The following options are recognized at the socket level:

SOL_SOCKET
 protocolLevel options Description
SO_ACCEPTCON Enable/disable listening for

connections. listen turns on this
option.

SO_DONTROUTE Enable/disable routing bypass for
outgoing messages. Default 0.

Turbo Treck Real-Time TCP/IP User’s Manual

5.14

SO_ERROR When an error occurs on a socket, the
Turbo Treck stack internally sets the error
code on the socket. It is called the pending
error for the socket. If the user had called
select for either readability or writability,
select returns with either or both condi-
tions set. If the user had registered a call
back function with the
TM_CB_SOCKET_ERROR flag, the user
would be notified. In both cases, the user
can then retrieve the pending socket error,
by calling getsockopt with this option
name at the SOL_SOCKET level, and the
Turbo Treck stack will reset the internal
socket error. Alternatively if the user is
waiting for incoming data, read or other
recv APIs can be called. If there is no data
queued to the socket, the read/recv call
returns TM_SOCKET_ERROR, the Turbo
Treck stack resets the internal socket error,
and the pending socket error can be
returned if the user calls tfGetSocketError
(equivalent of errno). Note that the
SO_ERROR option is useful when the user
uses connect in non-blocking mode, and
select.

SO_KEEPALIVE Enable/disable keep connections alive.
Default 0 (disable)

SO_OOBINLINE Enable/disable reception of out-of-band
data in band. Default is 0.

SO_REUSEADDR Enable this socket option to bind the same
port number to multiple sockets using
different local IP addresses. Note that to
use this socket option, you also need to
uncomment
TM_USE_REUSEADDR_LIST in
trsystem.h. Default 0 (disable).

SO_RCVLOWAT The low water mark for receiving.
SO_SNDLOWAT The low water mark for sending.
SO_RCVBUF The buffer size for input. Default is 8192

bytes.
SO_SNDBUF The buffer size for output. Default is

8192 bytes.

Programmer’s Reference

5.15

TM_SO_RCVCOPY TCP socket: fraction use of a receive
buffer below which we try and append
to a previous receive buffer in the
socket receive queue. UDP socket:
fraction use of a receive buffer below
which we try and copy to a new receive
buffer, if there is already at least a buffer
in the receive queue. This is to avoid
keeping large pre-allocated receive
buffers, which the user has not received
yet, in the socket receive queue.Default
value is 4 (25%).

TM_SO_SNDAPPEND TCP socket only. Threshold in bytes of
‘send’ buffer below, which we try and
append, to previous ‘send’ buffer in the
TCP send queue. Only used with send,
not with tfZeroCopySend. This is to try
to regroup lots of partially empty small
buffers in the TCP send queue waiting
to be ACKED by the peer; otherwise we
could run out of memory, since the
remote TCP will delay sending ACKs.
Note that care should be taken not to
use tfZeroCopySend when sending
small buffers, since we do not try to
regroup small buffers with
tfZeroCopySend.
Default value is 128 bytes.

SO_UNPACKEDDATA TI C3x and C5x DSP platforms only: If
this option is enabled, all socket data
will be sent and received in byte
unpacked format. If this option is
disabled, all socket data will be sent in a
byte packed format, as received from the
network. Default 0 (disable)

SO_REUSEADDR indicates that the rules used in validating addresses supplied
in a bind call should allow reuse of local addresses. SO_KEEPALIVE enables the
periodic transmission of messages (every 2 hours) on a connected socket. If the
connected party fails to respond to these messages, the connection is consid-
ered broken. SO_DONTROUTE indicates that outgoing messages should
bypass the standard routing facilities. Instead, messages are directed to the
appropriate network interface according to the network portion of the destination
address. SO_LINGER controls the action taken when unsent messages are

Turbo Treck Real-Time TCP/IP User’s Manual

5.16

queued on a socket and a close on the socket is performed. If the socket
promises reliable delivery of data and SO_LINGER is set, the system will block
the process on the close of the socket attempt until it is able to transmit the data
or until it decides it is unable to deliver the information (a timeout period, termed
the linger interval, is specified in the setsockopt call when SO_LINGER is
requested). If SO_LINGER is disabled and a close on the socket is issued, the
system will process the close of the socket in a manner that allows the process to
continue as quickly as possible. The option SO_BROADCAST requests
permission to send broadcast datagrams on the socket. With protocols that
support out-of-band data, the SO_OOBINLINE option requests that out-of-band
data be placed in the normal data input queue as received; it will then be acces-
sible with recv call without the MSG_OOB flag. SO_SNDBUF and SO_RCVBUF
are options that adjust the normal buffer sizes allocated for output and input
buffers, respectively. The buffer size may be increased for high-volume connec-
tions or may be decreased to limit the possible backlog of incoming data. The
Internet protocols place an absolute limit of 64 Kbytes on these values for UDP
and TCP sockets (in the default mode of operation).

The following options are recognized at the IP level.
IP_PROTOIP
protocolLevel options Description
IPO_MULTICAST_IF Get the configured IP address that

uniquely identifies the outgoing
interface for multicast datagrams
sent on this socket. A zero IP
address parameter indicates that we
want to reset a previously set
outgoing interface for multicast
packets sent on that socket.

IPO_MULTICAST_TTL Get the default IP TTL for outgoing
multicast datagrams.

IPO_SRCADDR Get the IP source address for the
connection.

IPO_TOS IP type of service. Default 0
IPO_TTL IP Time To Live in seconds.

Default 64

Programmer’s Reference

5.17

The following options are recognized at the TCP level.
IP_PROTOTCP
protocolLevel options Description
TCP_KEEPALIVE Get the idle time in seconds for a TCP

connection before it starts sending keep
alive probes. Note that keep alive probes
will be sent only if the SO_KEEPALIVE
socket option is enabled. Default 7,200
seconds.

TCP_MAXRT Get the amount of time in seconds before
the connection is broken once TCP starts
retransmitting, or probing a zero window
when the peer does not respond. A
TCP_MAXRT value of 0 means the
system default, and -1 means retransmit
forever. Note that unless the
TCP_MAXRT value is –1 (wait forever),
the connection can also be broken if the
number of maximum retransmission
TM_TCP_MAX_REXMIT has been
reached. See TM_TCP_MAX_REXMIT
below. Default 0.
(which means use system default of
TM_TCP_MAX_REXMIT times network
computed round trip time for an
established connection. For a non
established connection, since there is no
computed round trip time yet, the
connection can be broken when either 75
seconds or when
TM_TCP_MAX_REXMIT times default
network round trip time have elapsed,
whichever occurs first).

TCP_MAXSEG Get the maximum TCP segment size sent
on the network. Note that the
TCP_MAXSEG value is the maximum
amount of data (including TCP options,
but not the TCP header) that can be sent
per segment to the peer. i.e. the amount of
user data sent per segment is the value
given by the TCP_MAXSEG option minus
any enabled TCP option (for example 12
bytes for a TCP time stamp option).
Default is IP MTU minus 40 bytes.

Turbo Treck Real-Time TCP/IP User’s Manual

5.18

TCP_NODELAY If this option value is non-zero, the
Nagle algorithm that buffers the sent
data inside the TCP is disabled. Useful
to allow client’s TCP to send small
packets as soon as possible (like mouse
clicks). Default 0.

TCP_NOPUSH If this option value is non-zero, then
TCP delays sending any TCP data until
a full sized segment is buffered in the
TCP buffers. Useful for applications
that send continuous big chunks of data
and know that more data will be sent
such as FTP. (Normally, the TCP code
sends a non full-sized segment, only if it
empties the TCP buffer). Default 0.

TCP_STDURG If this option value is zero, then the
urgent data pointer points to the last
bye of urgent data + 1, like in Berkeley
systems. Default 1 (urgent pointer
points to last byte of urgent data as
specified in RFC1122).

TM_TCP_PACKET If this option value is non-zero, then
TCP behaves like a message-oriented
protocol (i.e. respects packet bound-
aries) at the application level in both
send and receive directions of data
transfer. Note that for the receive
direction to respect packet boundaries,
the TCP peer which is sending must also
implement similar functionality in its
send direction. This is useful as a
reliable alternative to UDP. Note that
preserving packet boundaries with TCP
will not work correctly if you use out-of-
band data. Default 0.

*TM_TCP_SEL_ACK If this option value is zero, then TCP
selective Acknowledgment options are
disabled. Default 1.

*TM_TCPWND_SCALE If this option value is non-zero, then the
TCP window scale option is enabled.
Default 1.

*TM_TCP_TS If this option value is non-zero, then the
TCP time stamp option is enabled.
Default 1.

Programmer’s Reference

5.19

TM_TCP_SLOW_START If this option value is non-zero, then the
TCP slow start algorithm is enabled.
Default 1.

TM_TCPDELAY_ACK Get the TCP delay ack time in
milliseconds. Default 200 milliseconds.

TM_TCPMAX_REXMIT Get the maximum number of
retransmissions without any response
from the remote before TCP gives up
and aborts the connection. See also
TCP_MAXRT above. Default 12.

TM_TCP_KEEPALIVE_CNT Get the maximum number of keep alive
probes without any response from the
remote before TCP gives up and aborts
the connection. See also
TCP_KEEPALIVE above. Default 8.

TM_TCPFINWT2TIME Get the maximum amount of time TCP
will wait for the remote side to close
after it initiated a close.
Default 600 seconds.

TM_TCP2MSLTIME Get the maximum amount of time TCP
will wait in the TIME WAIT state once it
has initiated a close of the connection.
Default 60 seconds.

TM_TCP_RTO_DEF Get the TCP default retransmission
timeout value in milliseconds. Used
when no network round trip time has
been computed yet.
Default 3,000 milliseconds.

TM_TCP_RTO_MIN Get the minimum retransmission timeout
in milliseconds. The network computed
retransmission timeout is bound by
TM_TCP_RTO_MIN and
TM_TCP_RTO_MAX.
Default 100 milliseconds.

TM_TCPRTO_MAX Get the maximum retransmission timeout
in milliseconds. The network computed
retransmission timeout is bound by
TM_TCPRTO_MIN and
TM_RTO_MAX. Default 64,000
milliseconds.

TM_TCPPROBE_MIN Get the minimum window probe timeout
interval in milliseconds. The network

Turbo Treck Real-Time TCP/IP User’s Manual

5.20

computed window probe timeout is
bound by TM_TCP_PROBE _MIN and
TM_TCP_PROBE _MAX. Default 500
milliseconds.

TM_TCP_PROBE_MAX Get the maximum window probe timeout
interval in milliseconds. The network
computed window probe timeout is
bound by TM_TCP_PROBE _MIN and
TM_TCP_PROBE _MAX. Default
60,000 milliseconds.

TM_TCP_KEEPALIVE_INTV Get the interval between Keep Alive
probes in seconds. See
TM_TCP_KEEPALIVE_CNT. Default 75
seconds.

Programmer’s Reference

5.21

Parameters

Parameter Description
socketDescriptor The socket descriptor to get the

option from.
protocolLevel The protocol to get the option from.

See below.
optionName The option to get. See above and

below.
optionValuePtr The pointer to a user variable into

which the option value is returned.
User variable is of data type
described below.

optionLengthPtr Pointer to the size of the user
variable, which is the size of the
option data type, described below.
It is a value-result parameter, and
the user should set the size prior to
the call.

ProtocolLevel Description
SOL_SOCKET Socket level protocol
IP_PROTOIP IP level protocol
IP_PROTOTCP TCP level protocol

Turbo Treck Real-Time TCP/IP User’s Manual

5.22

ProtocolLevel OptionName Option data type Option value
SOL_SOCKET SO_ACCEPTCON int 0 or 1

SO_DONTROUTE int 0 or 1
SO_ERROR int
SO_KEEPALIVE int 0 or 1
SO_LINGER struct linger
SO_OOBINLINE int 0 or 1
SO_RCVBUF unsigned long
SO_RCVLOWAT unsigned long
SO_REUSEADDR int 0 or 1
SO_SNDBUF unsigned long
SO_SNDLOWAT unsigned long
TM_SO_RCVCOPY unsigned int
TM_SO_SNDAPPEND unsigned int
SO_UNPACKEDDATA int 0 or 1

IP_PROTOIP IPO_MULTICAST_IF struct in_addr
IPO_MULTICAST_TTL unsigned char
IPO_TOS unsigned char
IPO_TTL unsigned char
IPO_SRCADDR ttUserIpAddress

IP_PROTOTCP TCP_KEEPALIVE int
TCP_MAXRT int
TCP_MAXSEG int
TCP_NODELAY int 0 or 1
TCP_NOPUSH int 0 or 1
TCP_STDURG int 0 or 1
TM_TCP_2MSLTIME int
TM_TCP_DELAY_ACK int
TM_TCP_FINWT2TIME int
TM_TCP_KEEPALIVE_CNT int
TM_TCP_KEEPALIVE_INTV int
TM_TCP_MAX_REXMIT int
TM_TCP_PACKET int 0 or 1
TM_TCP_PROBE_MAX unsigned long
TM_TCP_PROBE_MIN unsigned long
TM_TCP_RTO_DEF unsigned long
TM_TCP_RTO_MAX unsigned long
TM_TCP_RTO_MIN unsigned long
TM_TCP_SEL_ACK int 0 or 1
TM_TCP_SLOW_START int 0 or 1
TM_TCP_TS int 0 or 1
TM_TCP_WND_SCALE int 0 or 1

Programmer’s Reference

5.23

Returns
Value Meaning
0 Successful set of option
-1 An error occurred

getsockopt will fail if:
TM_EBADF The socket descriptor is invalid
TM_EINVAL One of the parameters is invalid
TM_ ENOPROTOOPT The option is unknown at the level

indicated

Turbo Treck Real-Time TCP/IP User’s Manual

5.24

htonl

#include <trsocket.h>

unsigned long htonl
(
unsigned long longValue
);

Function Description
This function converts a long value from host byte order to network byte order.

Parameters
Parameter Description
longValue The value to convert

Returns
The converted value

Programmer’s Reference

5.25

htons

#include <trsocket.h>

unsigned short htons
(
unsigned short shortValue
);

Function Description
This function converts a short value from host byte order to network byte order.

Parameters
Parameter Description
shortValue The value to convert

Returns
The converted value

Turbo Treck Real-Time TCP/IP User’s Manual

5.26

inet_addr

#include <trsocket.h>

unsigned long inet_addr
(
char * ipAddressDottedStringPtr
);

Function Description
This function converts an IP address from the decimal dotted notation to an
unsigned long.

Parameters
Parameter Description
ipAddressDottedStringPtr The dotted string (i.e.

“208.229.201.4”)

Returns
Value Meaning
-1 Error
Other The IP Address in Network Byte

Order

Programmer’s Reference

5.27

inet_aton

#include <trsocket.h>

unsigned long inet_aton
(
Char * ipAddressDottedStringPtr
);

Function Description
This function converts an IP address from the decimal dotted notation to an unsigned
long.

Parameters
Parameter Description
ipAddressDottedStringPtr The dotted string (i.e.

“208.229.201.4”)
Returns

Value Meaning
 0 Error
 Other The IP Address in Network Byte

Order

Turbo Treck Real-Time TCP/IP User’s Manual

5.28

inet_ntoa

#include <trsocket.h>

Char * inet_ntoa
(
struct in_addr inAddr
);

Function Description
This function converts an IP address structure (the sin_addr element of the
sockaddr_in structure) to an ASCII string in dotted decimal notation.

Note: inet_ntoa is not reentrant. It is only provided for BSD support. Users
should use the equivalent reentrant function called tfInetToAscii.

Parameters
Parameter Description
inetAddr Structure containing the address to

convert.
Returns

Value Meaning
 0 Error
 Other ASCII string of the IP address in

dotted decimal notation.

Programmer’s Reference

5.29

listen

#include <trsocket.h>

int listen
(
int socketDescriptor,
int backLog
);

Function Description
To accept connections, a socket is first created with socket a backlog for incoming
connections is specified with listen and then the connections are accepted with
accept. The listen call applies only to sockets of type SOCK_STREAM. The
backLog parameter defines the maximum length the queue of pending connections
may grow to. If a connection request arrives with the queue full, and the underlying
protocol supports retransmission, the connection request may be ignored so that
retries may succeed. For AF_INET sockets, the TCP will retry the connection. If
the backlog is not cleared by the time the TCP times out, connect will fail with
TM_ETIMEDOUT.

Parameters
Parameter Description
socketDescriptor The socket descriptor to listen on.
backlog The maximum number of

outstanding connections allowed
on the socket.

Returns

Value Meaning
 0 Success
-1 An error occurred

listen can fail for the following reason:

TM_EADDRINUSE The address is currently used by
another socket.

TM_ EBADF The socket descriptor is invalid.
TM_ EOPNOTSUPP The socket is not of a type that

supports the operation listen.

Turbo Treck Real-Time TCP/IP User’s Manual

5.30

ntohl

#include <trsocket.h>

unsigned long ntohl
(
unsigned long longValue
);

Function Description
This function converts a long value from network byte order to host byte order.

Parameters
Parameter Description
longValue The value to convert

Returns
The converted value

Programmer’s Reference

5.31

ntohs

#include <trsocket.h>

unsigned short ntohs
(
unsigned short shortValue
);

Function Description
This function converts a short value from network byte order to host byte order.

Parameters
Parameter Description
shortValue The value to convert

Returns
The converted value

Turbo Treck Real-Time TCP/IP User’s Manual

5.32

readv

#include <trsocket.h>

int readv
(
int socketDescriptor,
struct iovec * iov,
int iovcnt
);

Function Description
readv functions as a scatter read because the received data can be placed in multiple
buffers. readv attempts to read data from the socket socketDescriptor and places
the input data into the iovcnt buffers specified by the members of the iov array:
iov[0], iov[1], ..., iov[iovcnt-1].

The iovec structure contains the following members:

caddr_t iov_base;

int iov_len;

Each iovec entry specifies the base address and length of an area in memory where
data should be placed. readv always fills one buffer completely before proceeding
to the next. On success, readv returns the number of bytes actually read and placed
in the buffer; this number may be less than the total of all of the iov_len values. A
value of 0 is returned when an end-of-file has been reached.

Parameters
Parameter Description
socketDescriptor The socket descriptor from which to

read data
iov The list of buffers to put the

received data
iovcnt The number of buffers in the list

Programmer’s Reference

5.33

Returns
Value Meaning
>0 Number of bytes actually read from

the socket.
 0 EOF
 -1 An error occurred

readv will fail if:

TM_EBADF The socket descriptor is invalid
TM_EINVAL The iovcnt is 0 or less than 0. The

sum of the iov_len values
overflowed an integer

TM_ENOBUFS There was insufficient user memory
available to complete the operation

TM_ EWOULDBLOCK The socket is marked as non-
blocking and no data is available to
be read.

TM_ESHUTDOWN The peer has closed the connection
and there is no more data to read
(TCP socket only)

TM_ENOTCONN Socket is not connected

Turbo Treck Real-Time TCP/IP User’s Manual

5.34

recv

#include <trsocket.h>

int recv
(
int socketDescriptor,
char * bufferPtr,
int bufferLength,
int flags
);

Function Description
recv is used to receive messages from another socket. recv may be used only on a
connected socket (see connect, accept). socketDescriptor is a socket created with
socket or accept. The length of the message is returned. If a message is too long
to fit in the supplied buffer, excess bytes may be discarded depending on the type
of socket the message is received from (see socket). The length of the message
returned could also be smaller than bufferLength (this is not an error). If no messages
are available at the socket, the receive call waits for a message to arrive, unless the
socket is non-blocking, or the MSG_DONTWAIT flag is set in the flags parameter,
in which case -1 is returned with socket error being set to TM_EWOULDBLOCK.

Out-of-band data not in the stream (urgent data when the SO_OOBINLINE option
is not set (default)) (TCP protocol only).

A single out-of-band data byte is provided with the TCP protocol when the
SO_OOBINLINE option is not set. If an out-of-band data byte is present, recv with
the MSG_OOB flag not set will not read past the position of the out-of-band data
byte in a single recv request. That is, if there are 10 bytes from the current read
position until the out-of-band byte, and if we execute a recv specifying a bufferLength
of 20 bytes, and a flag value of 0, recv will only return 10 bytes. This forced
stopping is to allow us to execute the SOIOCATMARK tfIoctl to determine when
we are at the out-of-band byte mark. Alternatively, tfGetOobDataOffset can be
used instead of tfIoctl to determine the offset of the out-of-band data byte. When
we are at the mark, recv with the MSG_OOB flag set can read the out-of-band data
byte. Note that the user needs to either use select or tfRegisterSocketCB in order
to know when out-of-band data has arrived, or is arriving.

Out-of-band data (when the SO_OOBINLINE option is set (see setsockopt)).

Programmer’s Reference

5.35

(TCP protocol only)

If the SO_OOBINLINE option is enabled, the out-of-band data is left in the normal
data stream and is read without specifying the MSG_OOB. More than one out-of-
band data bytes can be in the stream at any given time. The out-of-band byte mark
corresponds to the final byte of out-of-band data that was received. In this case,
the MSG_OOB flag cannot be used with recv. The out-of-band data will be read in
line with the other data. Again, recv will not read past the position of the out-of-
band mark in a single recv request. Again, tfIoctl with the SOIOCATMARK, or
tfGetOobDataOffset can be used to determine where the last received out-of-band
byte is in the stream. Note that the user needs to either use select or
tfRegisterSocketCB in order to know when out-of-band data has arrived, or is
arriving.

select may be used to determine when more data arrives, or/and when out-of-band
data arrives.

tfRegisterSocketCB may be used to asynchronously determine when more data
arrives, or/and when out-of-band data arrives.

Parameters
Parameter Description
socketDescriptor The socket descriptor from which to

receive data.
bufferPtr The buffer into which the received

data is put.
bufferLength The length of the buffer area that

bufferPtr points to.
flags See below.

The flags parameter is formed by ORing one or more of the following:

MSG_DONTWAIT Do not wait for data, but rather
return immediately

MSG_OOB Read any “out-of-band” data
present on the socket rather than
the regular “in-band” data

MSG_PEEK “Peek” at the data present on the
socket; the data is returned, but not
consumed, so that a subsequent
receive operation will see the same
data

Turbo Treck Real-Time TCP/IP User’s Manual

5.36

Returns
Value Meaning
>0 Number of bytes actually received

from the socket.
 0 EOF
 -1 An error occurred

recv will fail if:

TM_EBADF The socket descriptor is invalid
TM_ENOBUFS There was insufficient user memory

available to complete the operation
TM_ EMSGSIZE The socket requires that message

be received atomically, and
bufferLength was too small

TM_EWOULDBLOCK The socket is marked as non-
blocking or the MSG_DONTWAIT
flag is used and no data is available
to be read, or the MSG_OOB flag is
set and the out of band data has
not arrived yet from the peer

TM_ESHUTDOWN The remote socket has closed the
connection, and there is no more
data to be received (TCP socket
only)

TM_EINVAL One of the parameters is invalid, or
the MSG_OOB flag is set and,
either the SO_OOBINLINE option is
set, or there is no out of band data
to read or coming from the peer

TM_ENOTCONN Socket is not connected
TM_EHOSTUNREACH No route to the connected host

Programmer’s Reference

5.37

recvfrom

#include <trsocket.h>

int recvfrom
(
int socketDescriptor,
char * bufferPtr,
int bufferLength,
int flags,
struct sockaddr * fromPtr,
int * fromLengthPtr
);

Function Description
recvfrom is used to receive messages from another socket. recvfrom may be used
to receive data on a socket whether it is in a connected state or not but not on a TCP
socket. socketDescriptor is a socket created with socket. If fromPtr is not a NULL
pointer, the source address of the message is filled in. fromLengthPtr is a value-
result parameter, initialized to the size of the buffer associated with fromPtr, and
modified on return to indicate the actual size of the address stored there. The
length of the message is returned. If a message is too long to fit in the supplied
buffer, excess bytes may be discarded depending on the type of socket the message
is received from (see socket). If no messages are available at the socket, the receive
call waits for a message to arrive, unless the socket is non-blocking, or the
MSG_DONTWAIT flag is set in the flags parameter, in which case -1 is returned
with socket error being set to EWOULDBLOCK.

select may be used to determine when more data arrives, or/and when out-of-band
data arrives.

tfRegisterSocketCB may be used to asynchronously determine when more data
arrives, or/and when out-of-band data arrives.

Turbo Treck Real-Time TCP/IP User’s Manual

5.38

Parameters

Parameter Description
socketDescriptor The socket descriptor to receive

data from.
bufferPtr The buffer to put the received data
bufferLength The length of the buffer area that

bufferPtr points to
flags See Below.
fromPtr The socket from which the data is

(or to be) received.
fromLengthPtr The length of the data area the

fromPtr points to then upon return
the actual length of the from data

The flags parameter is formed by ORing one or more of the following:

MSG_DONTWAIT Do not wait for data, but rather
return immediately

MSG_PEEK “Peek” at the data present on the
socket; the data is returned, but not
consumed, so that a subsequent
receive operation will see the same
data.

Returns

Value Meaning
>0 Number of bytes actually received

from the socket.
 0 EOF
 -1 An error occurred

Programmer’s Reference

5.39

recvfrom will fail if:

TM_EBADF The socket descriptor is invalid.
TM_EINVAL One of the parameters is invalid.
TM_ EMSGSIZE The socket requires that message

be received atomically, and
bufferLength was too small.

TM_EPROTOTYPE TCP protocol requires usage of
recv, not recvfrom.

TM_ENOBUFS There was insufficient user memory
available to complete the operation.

TM_EWOULDBLOCK The socket is marked as non-
blocking and no data is available to
be read.

Turbo Treck Real-Time TCP/IP User’s Manual

5.40

rresvport

#include <trsocket.h>

int rresvport
(
int * portToReservePtr
);

Function Description
rresvport is used to create a TCP socket and bind a reserved port to the socket
starting with the port to reserve given by the user. The portToReservePtr parameter
is a value result parameter. The integer pointed to by portToReservePtr is the first
port number that the function attempts to bind to. The caller typically initializes the
starting port number to IPPORT_RESERVED – 1. (IPPORT_RESERVED is defined
as 1024.) If the bind fails because that port is already used, then rresvport decrements
the port number and tries again. If it finally reaches IPPORT_RESERVEDSTART
(defined as 600) and finds it already in use, it returns –1 and set the socket error to
TM_EAGAIN. If this function successfully binds to a reserved port number, it
returns the socket descriptor to the user and stores the reserved port that the
socket is bound to in the integer cell pointed to by portToReservePtr.

Parameters
Parameter Description
portToReservePtr Pointer to the port number to

reserve, and to the port number
reserved on success.

Returns
Value Meaning
>= 0 Valid socket descpriptor
 -1 An error occurred

If an error occured, the socket error can be retrieved by calling tfGetSocketError
and using TM_SOCKET_ERROR as the socket descriptor parameter.

rresvport will fail if:

TM_AGAIN The TCP/IP stack could not find
any port number available between
IPPORT_RESERVEDSTART and the
port number to reserve.

TM_EINVAL Bad parameter; pointer is null or
port number to reserve is less than
IPPORT_RESERVEDSTART (600).

Programmer’s Reference

5.41

select

#include <trsocket.h>

int select
(
int numberSockets,
fd_set * readSocketsPtr,
fd_set * writeSocketsPtr,
fd_set * exceptionSocketsPtr,
struct timeval * timeOutPtr
);

Function Description
select examines the socket descriptor sets whose addresses are passed in
readSocketsPtr, writeSocketsPtr, and exceptionSocketsPtr to see if any of their
socket descriptors are ready for reading, are ready for writing, or have an
exceptional condition pending, respectively. Out-of-band data is the only exceptional
condition. The numberSockets argument specifies the number of socket descriptors
to be tested. Its value is is the maximum socket descriptor to be tested, plus one.
The socket descriptors from 0 to numberSockets -1 in the socket descriptor sets are
examined. On return, select replaces the given socket descriptor sets with subsets
consisting of those socket descriptors that are ready for the requested operation.
The return value from the call to select is the number of ready socket descriptors.
The socket descriptor sets are stored as bit fields in arrays of integers. The following
macros are provided for manipulating such file descriptor sets:

FD_ZERO(&fdset); Initializes a socket descriptor set (
fdset) to the null set.

FD_SET(fd, &fdset); Includes a particular socket
descriptor fd in fdset.

FD_CLR(fd, &fdset); Removes fd from fdset.
FD_ISSET(fd, &fdset); Is non-zero if fd is a member of

fdset, zero otherwise.
Note the term “fd” is used for BSD compatibility since select is used on both file
systems and sockets under BSD Unix.
The timeout parameter specifies a length of time to wait for an event to occur
before exiting this routine. struct timeval contains the following members:

tv_sec Number of seconds to wait
tv_usec Number of microseconds to wait

Turbo Treck Real-Time TCP/IP User’s Manual

5.42

If the total time is less than one millisecond, select will return immediately to the
user. The resolution of this timer is equal to the system tick length (the amount of
time between calls to tfTimerUpdate / tfTimerUpdateIsr).

Parameters

Parameter Description
numberSockets Biggest socket descriptor to be

tested, plus one.
readSocketsPtr The pointer to a mask of sockets to

check for a read condition.
writeSocketsPtr The pointer to a mask of sockets to

check for a write condition.
exceptionSocketsPtr The pointer to a mask of sockets to

check for an exception condition:
Out of Band data.

timeOutPtr The pointer to a structure
containing the length of time to wait
for an event before exiting.

Returns
Value Meaning
>0 Number of sockets that are ready
 0 Time limit exceeded
-1 An error occurred

If an error occurred, the socket error can be retrieved by calling
tfGetSocketError and using TM_SOCKET_ERROR as the socket descriptor
parameter.

select will fail if:

TM_EBADF One of the socket descriptors is
bad.

Programmer’s Reference

5.43

send

#include <trsocket.h>

int send
(
int socketDescriptor,
char * bufferPtr,
int bufferLength,
int flags
);

Function Description
send is used to transmit a message to another transport end-point. send may be
used only when the socket is in a connected state. socketDescriptor is a socket
created with socket.

If the message is too long to pass atomically through the underlying protocol (non
TCP protocol), then the error TM_EMSGSIZE is returned and the message is not
transmitted.

 A return value of -1 indicates locally detected errors only. A positive return value
does not implicitly mean the message was delivered, but rather that it was sent.

Blocking socket send: if the socket does not have enough buffer space available to
hold the message being sent, send blocks.

Non blocking stream (TCP) socket send: if the socket does not have enough buffer
space available to hold the message being sent, the send call does not block. It can
send as much data from the message as can fit in the TCP buffer and returnes the
length of the data sent. If none of the message data fits, then
–1 is returned with socket error being set to TM_EWOULDBLOCK.

Non blocking datagram socket send: if the socket does not have enough buffer
space available to hold the message being sent, no data is being sent and -1 is
returned with socket error being set to TM_EWOULDBLOCK.

The select call may be used to determine when it is possible to send more data.

Turbo Treck Real-Time TCP/IP User’s Manual

5.44

Sending Out-of-Band Data:
For example, if you have remote login application, and you want to interrupt with a
^C keystroke, at the socket level you want to be able to send the ^C flagged as
special data (also called out-of-band data). You also want the TCP protocol to let
the peer (or remote) TCP know as soon as possible that a special character is
coming, and you want the peer (or remote) TCP to notify the peer (or remote)
application as soon as possible. At the TCP level, this mechanism is called TCP
urgent data. At the socket level, the mechanism is called out-of-band data. Out-of-
band data generated by the socket layer, is implemented at the TCP layer with the
urgent data mechanism. The user application can send one or several out-of-band
data bytes. With TCP you cannot send the out-of-band data ahead of the data that
has already been buffered in the TCP send buffer, but you can let the other side
know (with the urgent flag, i.e the term urgent data) that out-of-band data is coming,
and you can let the peer TCP know the offset of the current data to the last byte of
out-of-band data. So with TCP, the out-of-band data byte(s) are not sent ahead of
the data stream, but the TCP protocol can notify the remote TCP ahead of time that
some out-of-band data byte(s) exist. What TCP does, is mark the byte stream where
urgent data ends, and set the Urgent flag bit in the TCP header flag field, as long as
it is sending data before ,or up to, the last byte of out-of-band data.

In your application, you can send out-of-band data, by calling the send function
with the MSG_OOB flag. All the bytes of data sent that way (using send with the
MSG_OOB flag) are out-of-band data bytes. Note that if you call send several times
with out-of-band data, TCP will always keep track of where the last out-of-band
byte of data is in the byte data stream, and flag this byte as the last byte of urgent
data. To receive out-of-band data, please see the recv section of this manual.

Parameters
Parameter Description
socketDescriptor The socket descriptor to use to

send data
bufferPtr The buffer to send
bufferLength The length of the buffer to send
flags See below

Programmer’s Reference

5.45

The flags parameter is formed by ORing one or more of the following:

MSG_DONTWAIT Do not wait for data send to
complete, but rather return
immediately.

MSG_OOB Send “out-of-band” data on
sockets that support this notion.
The underlying protocol must also
support “out-of-band” data. Only
SOCK_STREAM sockets created in
the AF_INET address family
support out-of-band data.

MSG_DONTROUTE The SO_DONTROUTE option is
turned on for the duration of the
operation. Only diagnostic or
routing programs use it.

Returns
Value Meaning
>=0 Number of bytes actually sent on

the socket
 -1 An error occurred

send will fail if:

TM_EBADF The socket descriptor is invalid.
TM_EINVAL One of the parameters is invalid.the

bufferPtr is NULL, the bufferLength
is <= 0 or an unsupported flag is
set.

TM_ENOBUFS There was insufficient user memory
available to complete the operation.

TM_EHOSTUNREACH Non-TCP socket only. No route to
destination host.

TM_ EMSGSIZE The socket requires that message to
be sent atomically, and the message
was too long.

TM_EWOULDBLOCK The socket is marked as non-
blocking and the send operation
would block.

TM_ENOTCONN Socket is not connected.
TM_ESHUTDOWN User has issued a write shutdown or

a tfClose call (TCP socket only).

Turbo Treck Real-Time TCP/IP User’s Manual

5.46

sendto

#include <trsocket.h>

int sendto
(
int socketDescriptor,
char * bufferPtr,
int bufferLength,
int flags,
const struct sockaddr* toPtr,
int toLength
);

Function Description
sendto is used to transmit a message to another transport end-point. sendto may
be used at any time (either in a connected or unconnected state), but not for a TCP
socket. socketDescriptor is a socket created with socket. The address of the target
is given by to with toLength specifying its size.

 If the message is too long to pass atomically through the underlying protocol, then
–1 is returned with the socket error being set to TM_EMSGSIZE, and the message
is not transmitted.

A return value of -1 indicates locally detected errors only. A positive return value
does not implicitly mean the message was delivered, but rather that it was sent.

If the socket does not have enough buffer space available to hold the message
being sent, and is in blocking mode, sendto blocks. If it is in non-blocking mode or
the MSG_DONTWAIT flag has been set in the flags parameter, –1 is returned with
the socket error being set to TM_EWOULDBLOCK.

The select call may be used to determine when it is possible to send more data.

Programmer’s Reference

5.47

Parameters
Parameter Description
socketDescriptor The socket descriptor to use to send

data.
bufferPtr The buffer to send.
bufferLength The length of the buffer to send.
toPtr The address to send the data to.
toLength The length of the to area pointed to

by toPtr.
flags See below

The flags parameter is formed by ORing one or more of the following:

MSG_DONTWAIT Don’t wait for data send to complete,
but rather return immediately.

MSG_DONTROUTE The SO_DONTROUTE option is
turned on for the duration of the
operation. Only diagnostic or routing
programs use it.

Returns
Value Meaning
>=0 Number of bytes actually sent on the

socket
 -1 An error occurred
TM_EHOSTDOWN Destination host is down
sendto will fail if:
TM_EBADF The socket descriptor is invalid.
TM_ENOBUFS There was insufficient user memory

available to complete the operation.
TM_EINVAL One of the parameters is invalid: the

bufferPtr is NULL, the bufferLength is
<= 0, an unsupported flag is set, toPtr
is NULL or toLength contains an
invalid length.

TM_EHOSTUNREACH No route to destination host.
TM_ EMSGSIZE The socket requires that message be

sent atomically, and the message was
too long.

TM_EPROTOTYPE TCP protocol requires usage of send
not sendto.

TM_EWOULDBLOCK The socket is marked as non-blocking
and the send operation would block.

Turbo Treck Real-Time TCP/IP User’s Manual

5.48

setsockopt

#include <trsocket.h>

int setsockopt
(
int socketDescriptor,
int protocolLevel,
int optionName,
const char * optionValue,
int optionLength
);

Function Description
setsockopt is used manipulate options associated with a socket. Options may exist
at multiple protocol levels; they are always present at the uppermost “socket” level.
When manipulating socket options, the level at which the option resides and the
name of the option must be specified. To manipulate options at the “socket” level,
protocolLevel is specified as SOL_SOCKET. To manipulate options at any other
level, protocolLevel is the protocol number of the protocol that controls the option.
For example, to indicate that an option is to be interpreted by the TCP protocol,
protocolLevel is set to the TCP protocol number. The parameters optionValuePtr
and optionlength are used to access option values for setsockopt. optionName
and any specified options are passed un-interpreted to the appropriate protocol
module for interpretation. The include file <trsocket.h> contains definitions for the
options described below. Most socket-level options take an int pointer for
optionValuePtr. For setsockopt, the integer value pointed to by the optionValuePtr
parameter should be non-zero to enable a boolean option, or zero if the option is to
be disabled. SO_LINGER uses a struct linger parameter that specifies the desired
state of the option and the linger interval (see below). struct linger is defined in
<trsocket.h>. struct linger contains the following members:

l_onoff on = 1/off = 0
l_linger linger time, in seconds

Programmer’s Reference

5.49

The following options are recognized at the socket level

SOL_SOCKET
 protocolLevel options Description
SO_DONTROUTE Enable/disable routing bypass for

outgoing messages. Default 0.
SO_KEEPALIVE Enable/disable keep connections

alive. Default 0.
SO_LINGER Linger on close if data is present.

Default is off.
SO_OOBINLINE Enable/disable reception of out-of-

band data in band. Default 0.
SO_REUSEADDR Enable this socket option to bind the

same port number to multiple sockets
using different local IP addresses.
Note that to use this socket option,
you also need to uncomment
TM_USE_REUSEADDR_LIST in
trsystem.h. Default 0 (disable).

SO_RCVLOWAT The low water mark for receiving data.
SO_SNDLOWAT The low water mark for sending data.
SO_R CVBUF Set buffer size for input. Default 8192

bytes.
SO_SNDBUF Set buffer size for output. Default

8192 bytes.
TM_SO_RCVCOPY TCP socket: fraction use of a receive

buffer below which we try and append
to a previous receive buffer in the
socket receive queue.
UDP socket: fraction use of a receive
buffer below which we try and copy
to a new receive buffer, if there is
already at least a buffer in the receive
queue.
This is to avoid keeping large pre-
allocated receive buffers, which the
user has not received yet, in the
socket receive queue.Default value is
4 (25%)

TM_SO_SNDAPPEND TCP socket only. Threshold in bytes
of ‘send’ buffer below, which we try

Turbo Treck Real-Time TCP/IP User’s Manual

5.50

and append, to previous ‘send’ buffer
in the TCP send queue. Only used
with send, not with tfZeroCopySend.
This is to try and regroup lots of
partially empty small buffers in the
TCP send queue waiting to be
ACKED by the peer; otherwise we
could run out of memory, since the
remote TCP will delay sending ACKs.
Note that care should be taken not to
use tfZeroCopySend when sending
small buffers, since we do not try and
regroup small buffers with
tfZeroCopySend. Default value is
128 bytes.

SO_UNPACKEDDATA TI C3x and C5x DSP platforms only: If
this option is enabled, all socket data
will be sent and received in byte
unpacked format. If this option is
disabled, all socket data will be sent in
a byte packed format, as received from
the network. Default 0 (disable)

SO_REUSEADDR indicates that the rules used in validating addresses supplied in
a bind call should allow reuse of local addresses. SO_KEEPALIVE enables the
periodic transmission of messages on a connected socket. If the connected party
fails to respond to these messages, the connection is considered broken.
SO_DONTROUTE indicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address.

SO_LINGER controls the action taken when unsent messages are queued on a
socket and a close on the socket is performed. If the socket promises reliable
delivery of data and SO_LINGER is set, the system will block the process on the
close of the socket attempt until it is able to transmit the data or decides it is unable
to deliver the information. A timeout period, termed the linger interval, is specified in
the setsockopt call when SO_LINGER is requested. If SO_LINGER is disabled and
a close on the socket is issued, the system will process the close of the socket in a
manner that allows the process to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams
on the socket. With protocols that support out-of-band data, the SO_OOBINLINE
option requests that out-of-band data be placed in the normal data input queue as
received; it will then be accessible with recv call without the MSG_OOB flag.
SO_SNDBUF and SO_RCVBUF are options that adjust the normal buffer sizes

Programmer’s Reference

5.51

allocated for output and input buffers, respectively. The buffer size may be increased
for high-volume connections or may be decreased to limit the possible backlog of
incoming data. The Internet protocols place an absolute limit of 64 Kbytes on these
values for UDP and TCP sockets (in the default mode of operation).
The following options are recognized at the IP level:

IP_PROTOIP
protocolLevel options Description
IPO_HDRINCL This is a toggle option used on Raw

Sockets only. If the value is non-
zero, it instructs the Turbo Treck
stack that the user is including the
IP header when sending data.
Default 0.

IPO_TOS IP type of service. Default 0.
IPO_TTL IP Time To Live in seconds. Default

64.
IPO_SRCADDR Our IP source address. Default:

first multi-home IP address on the
outgoing interface.

IPO_MULTICAST_TTL Change the default IP TTL for
outgoing multicast datagrams

IPO_MULTICAST_IF Specify a configured IP address
that will uniquely identify the
outgoing interface for multicast
datagrams sent on this socket. A
zero IP address parameter indicates
that we want to reset a previously
set outgoing interface for multicast
packets sent on that socket

IPO_ADD_MEMBERSHIP Add group multicast IP address to
given interface (see struct ip_mreq
data type below)

IPO_DROP_MEMBERSHIP Delete group multicast IP address
from given interface (see struct
ip_mreq data type below)

Turbo Treck Real-Time TCP/IP User’s Manual

5.52

ip_mreq structure definition

struct ip_mreq
{
struct in_addr imr_multiaddr;
struct in_addr imr_interface
};

ip_mreq structure Members

Member Description
imr_multiaddr IP host group address that the user

wants to join/leave
imr_interface IP address of the local interface that

the host group address is to be
joined on, or is to leave from. If
imr_interface is zero, then the
default local interface selected with
tfSetMcastInterface will be used
instead.

The following options are recognized at the TCP level. Options marked with an
asterix can only be changed prior to establishing a TCP connection.

IP_PROTOTCP
protocolLevel options Description
TCP_KEEPALIVE Sets the idle time in seconds for a

TCP connection, before it starts
sending keep alive probes. It
cannot be set below the default
value. Note that keep alive probes
will be sent only if the
SO_KEEPALIVE socket option is
enabled. Default 7,200 seconds.

TCP_MAXRT Sets the amount of time in seconds
before the connection is broken,
once TCP starts retransmitting, or
probing a zero window, when the
peer does not respond. A
TCP_MAXRT value of 0 means to
use the system default, and -1
means to retransmit forever. If a
positive value is specified, it may be
rounded-up to the connection next
retransmission time.

Programmer’s Reference

5.53

Note that unless the TCP_MAXRT value
is –1 (wait forever), the connection can
also be broken if the number of maximum
retransmissions has been reached
(TM_TCP_MAX_REXMIT).
See TM_TCP_MAX_REXMIT below.
Default 0 (Which means use system
default of TM_TCP_MAX_REXMIT times
network computed round trip time for an
established connection; for a non
established connection, since there is no
computed round trip time yet, the
connection can be broken when either 75
seconds, or when
TM_TCP_MAX_REXMIT times default
network round trip time have elapsed,
whichever occurs first).

TCP_MAXSEG Sets the maximum TCP segment size sent
on the network. Note that the
TCP_MAXSEG value is the maximum
amount of data (including TCP options,
but not the TCP header) that can be sent
per segment to the peer., i.e the amount of
user data sent per segment is the value
given by the TCP_MAXSEG option minus
any enabled TCP option (for example 12
bytes for a TCP time stamp option) . The
TCP_MAXSEG value can be decreased or
increased prior to a connection
establishment, but it is not recommended
to set it to a value higher than the IP MTU
minus 40 bytes (for example 1460 bytes on
Ethernet), since this would cause
fragmentation of TCP segments. Note:
setting the TCP_MAXSEG option will
inhibit the automactic computation of
that value by the system based on the IP
MTU (which avoids fragmentation), and
will also inhibit Path Mtu Discovery.
After the connection has started, this
value cannot be changed. Note also that
the TCP_MAXSEG value cannot be set
below 64 bytes. Default value is IP MTU
minus 40 bytes.

Turbo Treck Real-Time TCP/IP User’s Manual

5.54

TCP_NODELAY Set this option value to a non-zero value, to
disable the Nagle algorithm that buffers the
sent data inside the TCP. Useful to allow
client’s TCP to send small packets as soon
as possible (like mouse clicks). Default 0

TCP_NOPUSH Set this option value to a non-zero value, to
force TCP to delay sending any TCP data
until a full sized segment is buffered in the
TCP buffers. Useful for applications that
send continuous big chunks of data like
FTP, and know that more data is coming.
(Normally the TCP code sends a non full-
sized segment, only if it empties the TCP
buffer). Default 0

TCP_STDURG Set this option value to a zero value, if the
peer is a Berkeley system since Berkeley
systems set the urgent data pointer to point
to last byte of urgent data+1. Default 1
(urgent pointer points to last byte of urgent
data as specified in RFC1122).

TM_TCP_PACKET Set this option value to a non-zero value to
make TCP behavelike a message-oriented
protocol (i.e. respect packet boundaries) at
the application level in both send and
receive directions of data transfer. Note that
for the receive direction to respect packet
boundaries, the TCP peer which is sending
must also implement similar functionality in
its send direction. This is useful as a
reliable alternative to UDP. Note that
preserving packet boundaries with TCP will
not work correctly if you use out-of-band
data. TM_USE_TCP_PACKET must be
defined in trsystem.h to use the
TM_TCP_PACKET option. Default 0

*TM_TCP_SEL_ACK Set this option value to a non-zero
value, to enable sending the TCP
selective Acknowlegment option.
Default 1

*TM_TCP_WND_SCALE Set this option value to a non-zero value, to
enable sending the TCP window scale
option. Default 1

*TM_TCP_TS Set this option value to a non-zero value, to

Programmer’s Reference

5.55

 enable sending the Time stamp option.
 Default 1

TM_TCP_SLOW_START Set this option value to zero, to disable the
TCP slow start algorithm. Default 1

TM_TCP_DELAY_ACK Sets the TCP delay ack time in
milliseconds. Default 200 milliseconds

TM_TCP_MAX_REXMIT Sets the maximum number of
retransmissions without any response
from the remote, before TCP gives up and
aborts the connection. See also
TCP_MAXRTabove. Default 12

TM_TCP_KEEPALIVE_CNT Sets the maximum numbers of keep alive
probes without any response from the
remote, before TCP gives up and aborts
the connection. See also TCP_KEEPALIVE
above. Default 8

TM_TCP_FINWT2TIME Sets the maximum amount of time TCP will
wait for the remote side to close, after it
initiated a close.
Default 600 seconds

TM_TCP_2MSLTIME Sets the maximum amount of time TCP will
wait in the TIME WAIT state, once it has
initiated a close of the connection. Default
60 seconds

TM_TCP_RTO_DEF Sets the TCP default retransmission
timeout value in milliseconds, used when
no network round trip time has been
computed yet.
Default 3,000 milliseconds

TM_TCP_RTO_MIN Sets the minimum retransmission timeout
in milliseconds. The network computed
retransmission timeout is bound by
TM_TCP_RTO_MIN and
TM_TCP_RTO_MAX.
Default 100 milliseconds

TM_TCP_RTO_MAX Sets the maximum retransmission timeout
in milliseconds. The network computed
retransmission timeout is bound by
TM_TCP_RTO_MIN and
TM_RTO_MAX.
Default 64,000 milliseconds

Turbo Treck Real-Time TCP/IP User’s Manual

5.56

TM_TCP_PROBE_MIN Sets the minimum window probe
timeout interval in milliseconds. The
network computed window probe
timeout is bound by
TM_TCP_PROBE_MIN and
TM_TCP_PROBE_MAX.
Default 500 milliseconds

TM_TCP_PROBE_MAX Sets the maximum window probe
timeout interval in milliseconds. The
network computed window probe
timeout is bound by
TM_TCP_PROBE_MIN and
TM_TCP_PROBE_MAX.
Default 60,000 milliseconds

TM_TCP_KEEPALIVE_INTV Sets the interval between Keep Alive
probes in seconds. See
TM_TCP_KEEPALIVE_CNT. This
value cannot be changed after a
connection is established, and cannot
be bigger than 120 seconds.
Default 75 seconds

Parameters
Parameter Description
socketDescriptor The socket descriptor to set the

options on..
protocolLevel The protocol to set the option on.

See below.
optionName The name of the option to set. See

below and above.
optionValuePtr The pointer to a user variable from

which the option value is set. User
variable is of data type described
below.

optionLength The size of the user variable. It is the
size of the option data type described
below.

ProtocolLevel Description
SOL_SOCKET Socket level protocol.
IP_PROTOIP IP level protocol.
IP_PROTOTCP TCP level protocol

Programmer’s Reference

5.57

ProtocolLevelOptionName Option data type Option value
SOL_SOCKET SO_DONTROUTE int 0 or 1

SO_KEEPALIVE int 0 or 1
SO_LINGER struct linger
SO_OOBINLINE int 0 or 1
SO_RCVBUF unsigned long
SO_RCVLOWAT unsigned long
SO_REUSEADDR int 0 or 1
SO_SNDBUF unsigned long
SO_SNDLOWAT unsigned long
TM_SO_RCVCOPY unsigned int

TM_SO_SNDAPPEND unsigned int
SO_UNPACKEDDATA int 0 or 1

IP_PROTOIP IPO_TOS unsigned char
IPO_TTL unsigned char
IPO_SRCADDR ttUserIpAddress
IPO_MULTICAST_TTL unsigned char
IPO_MULTICAST_IF struct in_addr
IPO_ADD_MEMBERSHIP struct ip_mreq
IPO_DROP_MEMBERSHIP struct ip_mreq

IP_PROTOTCP TCP_KEEPALIVE int
TCP_MAXRT int
TCP_MAXSEG int
TCP_NODELAY int 0 or 1
TCP_NOPUSH int 0 or 1
TCP_STDURG int 0 or 1
TM_TCP_PACKET int 0 or 1
TM_TCP_2MSLTIME int
TM_TCP_DELAY_ACK int
TM_TCP_FINWT2TIME int
TM_TCP_KEEPALIVE_CNT int
TM_TCP_KEEPALIVE_INTV int
TM_TCP_MAX_REXMIT int
TM_TCP_PROBE_MAX unsigned long
TM_TCP_PROBE_MIN unsigned long
TM_TCP_RTO_DEF unsigned long
TM_TCP_RTO_MAX unsigned long
TM_TCP_RTO_MIN unsigned long
TM_TCP_SEL_ACK int 0 or 1
TM_TCP_SLOW_START int 0 or 1
TM_TCP_TS int 0 or 1
TM_TCP_WND_SCALE int 0 or 1

Turbo Treck Real-Time TCP/IP User’s Manual

5.58

Returns
Value Meaning
 0 Successful set of option
-1 An error occurred

setsockopt will fail if:
TM_EBADF The socket descriptor is invalid
TM_EINVAL One of the parameters is invalid
TM_ ENOPROTOOPT The option is unknown at the level

indicated.
TM_EPERM Option cannot be set after the

connection has been established.
TM_EPERM IPO_HDRINCL option cannot be

set on non-raw sockets.
TM_ENETDOWN Specified interface not yet

configured.
TM_EADDRINUSE Multicast host group already added

to the interface.
TM_ENOBUF Not enough memory to add new

multicast entry.
TM_ENOENT Attempted to delete a non-existent

multicast entry on the specified
interface.

Programmer’s Reference

5.59

shutdown

#include <trsocket.h>

int shutdown
(
int socketDescriptor,
int howToShutdown
);

Function Description
Shutdown a socket in read, write, or both directions determined by the parameter
howToShutdown.

Parameters
Parameter Description
socketDescriptor The socket to shutdown
howToShutdown Direction:

0 = Read
1 = Write
2 = Both

Returns
Value Meaning
 0 Success
-1 An error occurred

shutdown will fail if:

TM_EBADF The socket descriptor is invalid
TM_EINVAL One of the parameters is invalid
TM_EOPNOTSUPP Invalid socket type - can only

shutdown TCP sockets.
TM_ESHUTDOWN Socket is already closed or is in the

process of closing.

Turbo Treck Real-Time TCP/IP User’s Manual

5.60

socket

#include <trsocket.h>

int socket
(
int family,
int type,
int protocol
);

Function Description
socket creates an endpoint for communication and returns a descriptor. The
family parameter specifies a communications domain in which communication will
take place; this selects the protocol family that should be used. The protocol
family is generally the same as the address family for the addresses supplied in
later operations on the socket. These families are defined in the include file
<trsocket.h>. If protocol has been specified, but no exact match for the tuplet
family, type, and protocol is found, then the first entry containing the specified
family and type with zero for protocol will be used. The currently understood
format is PF_INET for ARPA Internet protocols. The socket has the indicated
type, which specifies the communication semantics.
Currently defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based
byte streams. An out-of-band data transmission mechanism is supported. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages
of a fixed (typically small) maximum length); a SOCK_DGRAM user is required to
read an entire packet with each recv call or variation of recv call, otherwise an error
code of TM_EMSGSIZE is returned. protocol specifies a particular protocol to be
used with the socket. Normally only a single protocol exists to support a particular
socket type within a given protocol family. However, multiple protocols may exist,
in which case, a particular protocol must be specified in this manner.

The protocol number to use is particular to the “communication domain” in
which communication is to take place. If the caller specifies a protocol, then it
will be packaged into a socket level option request and sent to the underlying
protocol layers. Sockets of type SOCK_STREAM are full-duplex byte streams.
A stream socket must be in a connected state before any data may be sent or
received on it. A connection to another socket is created with connect on the
client side. On the server side, the server must call listen and then accept. Once
connected, data may be transferred using recv and send calls or some variant of

Programmer’s Reference

5.61

the send and recv calls. When a session has been completed, a close of the
socket should be performed. The communications protocols used to implement a
SOCK_STREAM ensure that data is not lost or duplicated.
If a piece of data (for which the peer protocol has buffer space) cannot be success-
fully transmitted within a reasonable length of time, then the connection is consid-
ered broken and calls will indicate an error with (-1) return value and with
TM_ETIMEDOUT as the specific socket error. The TCP protocols optionally keep
sockets “warm” by forcing transmissions roughly every two hours in the absence
of other activity. An error is then indicated if no response can be elicited on an
otherwise idle connection for an extended period (for instance 5 minutes).
SOCK_DGRAM or SOCK_RAW sockets allow datagrams to be sent to correspon-
dents named in sendto calls. Datagrams are generally received with recvfrom which
returns the next datagram with its return address. The operation of sockets is
controlled by socket level options. These options are defined in the file <trsocket.h>.
setsockopt and getsockopt are used to set and get options, respectively.

Parameters
Parameter Description
family The protocol family to use for this socket

(currently only PF_INET is used).
type The type of socket.
protocol The layer 4 protocol to use for this socket.

Family Type Protocol Actual protocol
PF_INET SOCK_DGRAM IPPROTO_UDP UDP
PF_INET SOCK_STREAM IPPROTO_TCP TCP
PF_INET SOCK_RAW IPPROTO_ICMP ICMP
PF_INET SOCK_RAW IPRPTOTO_IGMP IGMP
Returns
New Socket Descriptor or –1 on error. If an error occured, the socket error can be
retrieved by calling tfGetSocketError and using TM_SOCKET_ERROR as the
socket descriptor parameter

socket will fail if:

TM_ EMFILE No more sockets are available
TM_ENOBUFS There was insufficient user memory

available to complete the operation
TM_ EPROTONOSUPPORT The protocol type or the specified

protocol is not supported within
this family.

Turbo Treck Real-Time TCP/IP User’s Manual

5.62

tfClose

#include <trsocket.h>

int tfClose
(
int socketDescriptor
);

Function Description
This function is used to close a socket. It is not called close to avoid confusion
with an embedded kernel file system call.

Parameters
Parameter Description
socketDescriptor The socket descriptor to close

Returns
Value Meaning
 0 Operation completed successfully
-1 An error occurred

tfClose can fail for the following reasons:

TM_EBADF The socket descriptor is invalid.
TM_EALREAY A previous tfClose call is already in

progress.
TM_ETIMEDOUT The linger option was on with a

non-zero timeout value, and the
linger timeout expired before the
TCP close handshake with the
remote host could complete
(blocking TCP socket only).

Programmer’s Reference

5.63

tfIoctl

#include <trsocket.h>

int tfIoctl
(
int socketDescriptor,
unsigned long request,
int * argumentPtr
);

Function Description
This function is used to set/clear nonblocking I/O, to get the number of bytes to
read, or to check whether the specified socket’s read pointer is currently at the out
of band mark. It is not called ioctl to avoid confusion with an embedded kernel file
system call.

Request Description
FIONBIO Set/clear nonbllocking I/O: if the int

cell pointed to by argumentPtr
contains a non-zero value, then the
specified socket non-blocking flag
is turned on. If it contains a zero
value, then the specified socket
non-blocking flag is turned off. See
also tfBlockingState.

FIONREAD Stores in the int cell pointed to by
argumentPtr the number of bytes
available to read from the socket
descriptor. See also
tfGetWaitingBytes.

SIOCATMARK Stores in the int cell pointed to by
argumentPtr a non-zero value if the
specified socket’s read pointer is
currently at the out-of-band mark,
zero otherwise. See revc call for a
description of
out-of-band data. See also
tfGetOobDataOffset.

Turbo Treck Real-Time TCP/IP User’s Manual

5.64

Example

Given a valid socketDescriptor, the following code will turn on the socket’s
nonblocking I/O flag.

int argValue;
argValue = 1;
tfIoctl(socketDescriptor, FIONBIO, &argValue);

Parameters
Parameter Description
socketDescriptor The socket descriptor we want to

perform the ioctl request on.

request FIONBIO, FIONREAD, or
SIOCATMARK

argumentPtr A pointer to an int cell in which to
store the request parameter or
request result.

Returns
Value Meaning
 0 Success.
-1 An error has occured.

tfioctl can fail for the following reasons:
TM_EBADF The socket descriptor is invalid.
TM_EINVAL Request is not one of FIONBIO,

FIONREAD, or SOIOCATMARK.

Programmer’s Reference

5.65

tfRead

#include <trsocket.h>

int tfRead
(
int socketDescriptor,
char * bufferPtr,
int bufferLength
);

Function Description
tfRead is used to receive messages from another socket. It is not called read to
avoid confusion with an embedded kernel file system call. It operates identically to
recv, except that it does not have any flag parameter, and hence does not support
out-of-band data, or overwriting the blocking state of the socket for the duration of
the call.

Parameters
Parameter Description
socketDescriptor The socket descriptor to receive

data from.
bufferPtr The buffer to put the received data

into
bufferLength The length of the buffer area that

bufferPtr points to
Returns

Value Meaning
>0 Number of bytes actually received

from the socket
 0 EOF
 -1 An error occurred

Turbo Treck Real-Time TCP/IP User’s Manual

5.66

tfread will fail if:

TM_EBADF The socket descriptor is invalid.
TM_ENOBUFS There was insufficient user memory

available to complete the operation.
TM_ EMSGSIZE The socket requires that message

be received atomically, and
bufferLength was too small.

TM_EWOULDBLOCK The socket is marked as non-
blocking and no data is available to
be read.

TM_ESHUTDOWN The remote socket has closed the
connection, and there is no more
data to be read (TCP socket only).

TM_ENOTCONN Socket is not connected.
TM_EINVAL One of the parameter is invalid.

Programmer’s Reference

5.67

tfWrite
#include <trsocket.h>

int tfWrite
(
int socketDescriptor,
char * bufferPtr,
int bufferLength
);

Function Description
tfWrite is used to transmit a message to another transport end-point. It is not
called write to avoid confusion with an embedded kernel file system call. It operates
identically to send, except that it does not have any flags parameter, and hence does
not support sending out-of-band data, or overwriting the blocking state of the
socket for the duration of the call.

Parameters

Parameter Description
socketDescriptor The socket descriptor to use to

send data.
bufferPtr The buffer to send.
bufferLength The length of the buffer to send.

Returns
Value Meaning
>=0 Number of bytes actually sent on

the socket.
 -1 An error occurred.

tfWrite will fail if:
TM_EBADF The socket descriptor is invalid.
TM_ENOBUFS There was insufficient user memory

available to complete the operation.
TM_EHOSTUNREACH Non-TCP socket only. No route to

destination host.
TM_ EMSGSIZE The socket requires that message to

be sent atomically, and the message
was too long.

TM_EWOULDBLOCK The socket is marked as non-
blocking and the write operation
would block.

Turbo Treck Real-Time TCP/IP User’s Manual

5.68

writev

#include <trsocket.h>

int writev
(
int socketDescriptor,
const struct iovec *iov,
int iovcnt
);

Function Description
writev functions as a scatter write because the written data can be placed in multiple
buffers. writev attempts to write data to the socket socketDescriptor by gathering
the data from into the iovcnt buffers specified by the members of the iov array:
iov[0], iov[1], ..., iov[iovcnt-1].

The iovec structure contains the following members:

caddr_tiov_base;
intiov_len;

Each iovec entry specifies the base address and length of an area in memory from
where data should be gathered. writev always reads one buffer completely before
proceeding to the next. On success, writev return the number of bytes actually
written; this number may be less than the total of all of the iov_len values if there is
not enough space on the send queues.

Parameters
Parameter Description
socketDescriptor The socket descriptor to write data

to.
iov The list of buffers to gather and

send the data from.
iovcnt The number of buffers in the list.

Returns
Value Meaning
>=0 Number of bytes actually written
 -1 An error occurred

Programmer’s Reference

5.69

writev will fail if:
TM_EBADF The socket descriptor is invalid.
TM_EINVAL The iovcnt is 0 or less than 0. The

sum of the iov_len values
overflowed an integer.

TM_ENOBUFS There was insufficient user memory
available to complete the operation.

TM_ EMSGSIZE The socket requires that message to
be sent atomically, and the message
was too long.

TM_ EWOULDBLOCK The socket is marked as non-
blocking and all the data could not
be written.

TM_ENOTCONN The socket is not connected.
TM_ESHUTDOWN The user has issued a write

shutdown call or a tfClose call (TCP
socket only).

Turbo Treck Real-Time TCP/IP User’s Manual

5.70

Socket Extension Calls

tfBindNoCheck

#include <trsocket.h>

int tfBindNoCheck
(
int socketDescriptor,
const struct sockaddr *addressPtr,
int addressLength
);

Function Description
tfBindNoCheck assigns an address to an unnamed socket. When a socket is
created with socket, it exists in an address family space but has no address assigned.
tfBindNoCheck requests that the address pointed to by addressPtr be assigned to
the socket. Clients do not normally require that an address be assigned to a socket.
However, servers usually require that the socket be bound to a “well known”
address. The port number must be less than 32768 (TM_SOC_NO_INDEX), or
could be 0xFFFF (TM_WILD_PORT). Binding to the TM_WILD_PORT port number
allows a server to listen for incoming connection requests on all the ports. Multiple
sockets cannot bind to the same port with different IP addresses (as might be
allowed in UNIX). This function is similar to bind, except that bind checks that the
address that the user wants to bind to is a valid configured address on an interface;
tfBindNoCheck does not check for that, and allows the user to bind to any IP
address.

Parameters
Parameter Description
socketDescriptor The socket descriptor to assign an

IP address and port number to.
addressPtr The pointer to the structure

containing the address to assign.
addressLength The length of the address structure.

Programmer’s Reference

5.71

Returns
Value Meaning
0 Success
-1 An error occurred

tfBindNoCheck can fail for any of the following reasons:

TM_EADDRINUSE The specified address is already in
use.

TM_EBADF socketDescriptor is not a valid
descriptor.

TM_EINVAL One of the passed parameters is
invalid, or socket is already bound.

TM_EINPROGRESS tfBindNoCheck is already running.

Turbo Treck Real-Time TCP/IP User’s Manual

5.72

tfBlockingState

#include <trsocket.h>

int tfBlockingState
(
int socketDescriptor,
int blockingState
);

Function Description
This function is used to set blocking or non-blocking on a socket as the default
mode of operation. This can be overridden with the MSG_DONTWAIT flags on
subsequent calls. The tfIoctl call with the FIONBIO request can be used instead of
the tfBlockingState call.

Parameters
Parameter Description
socketDescriptor The socket descriptor to set the

non-blocking flag on.
blockingState One of the following:

TM_BLOCKING_OFF
TM_BLOCKING_ON

Returns
Value Meaning
 0 Success
-1 Error

tfBlockingState can fail for the following reason:

TM_ EBADF The socket descriptor is invalid.
TM_EINVAL blockingState parameter is invalid.

Programmer’s Reference

5.73

tfFlushRecvQ

#include <trsocket.h>

int tfFlushRecvQ
(
int socketDescriptor
);

Function Description
This function flushes the socket receive buffer for the specified socket. This can
be useful with UDP sockets to flush queued packets that are too big for the
application to process (i.e. when the call to recvfrom returns TM_EMSGSIZE).
Note that this function flushes all packets queued to be received on the speci-
fied socket.

Parameters
Parameter Description
socketDescriptor The socket descriptor to flush the

socket receive buffer for.

Returns
Value Meaning
TM_ENOERROR This function always returns

TM_ENOERROR.

Turbo Treck Real-Time TCP/IP User’s Manual

5.74

tfFreeDynamicMemory

#include <trsocket.h>

int tfFreeDynamicMemory
(
void
);

Function Description
This function frees all memory allocated dynamically by the Turbo Treck internal
memory management system. Called by the user, when the user does not want to
use the Turbo Treck stack anymore, and wants all currently unused memory to
be returned to the user’s system.

Note: The user cannot free the Turbo Treck Dynamic memory if the user uses
the Turbo Treck simple heap.

Returns
Value Meaning
0 Success
TM_ENOENT The user cannot free the dynamic

memory either because the user had
disabled the dynamic memory by
defining the following macro:
TM_DISABLE_DYNAMIC_MEMORY
in trsystem.h, or because the user
uses the Turbo Treck simple heap.

Programmer’s Reference

5.75

tfFreeZeroCopyBuffer

#include <trsocket.h>

int tfFreeZeroCopyBuffer
(
ttUserMessage bufferHandle
);

Function Description
This function is used to free a zero copy buffer that was allocated via
tfGetZeroCopyBuffer, tfZeroCopyRecv, or tfZeroCopyRecvFrom.

Parameters

Parameter Description
bufferHandle The buffer handle of the buffer to

free.
Returns

Value Meaning
0 Success
-1 Error. The buffer did not belong to

the user.

Turbo Treck Real-Time TCP/IP User’s Manual

5.76

tfGetOobDataOffset

#include <trsocket.h>

int tfGetOobDataOffset
(
int socketDescriptor
);

Function Description
This function is used to get the offset of the out of band data sitting in the receive
queue. This allows the user to determine where the out of band data is located in
the stream. The tfIoctl call with the SOIOCATMARK request can be used instead of
the tfGetOobDataOffset call, but the tIfoctl call only tells us whether we are at the
out-of-band byte mark, whereas the tfGetOobDataOffset call gives us the offset to
the out-of-band byte. See recv call for out-of-band data description.

Parameters
Parameter Description
socketDescriptor The socket descriptor to get the

number of bytes in the data stream to
the out-of-band data offset.

Returns
Number of out of band offset, -1 if call failed

tfGetOobDataOffset can fail for the following reasons:
TM_ EBADF The socket descriptor is invalid.
TM_EINVAL No Out of Band Data is waiting to

be read.

Programmer’s Reference

5.77

tfGetSendCompltBytes

#include <trsocket.h>

int tfGetSendCompltBytes
(
int socketDescriptor
);

Function Description
This function is used to get the number of sent bytes that have been acked since
the last call to tfGetSendCompltBytes call by the peer on a TCP socket.

Parameters
Parameter Description
socketDescriptor The socket number to check on the

amount of bytes acked by the peer.
Returns

Value Meaning
>=0 Number of bytes that have been

sent to, and acked by the TCP peer.
 -1 An error has occurred

tfGetSendCompltBytes can fail for the following reasons:

TM_ EBADF The socket descriptor is invalid.
TM_EOPNOTSUPP The socket is not a TCP socket.

Turbo Treck Real-Time TCP/IP User’s Manual

5.78

tfGetSocketError

#include <trsocket.h>

int tfGetSocketError
(
int socketDescriptor
);

Function Description
This function is used when any socket call fails (TM_SOCKET_ERROR), to get the
error value back. This call has been added to allow for the lack of a per-process
errno value that is lacking in most embedded real-time kernels.

Parameters
Parameter Description
socketDescriptor The socket descriptor to get the

error on.
Returns

The last errno value for a socket

Programmer’s Reference

5.79

tfGetWaitingBytes

#include <trsocket.h>

int tfGetWaitingBytes
(
int socketDescriptor
);

Function Description
This function is used to get the number of bytes waiting to be read on a socket. The
tfIoctl call with the FIONREAD request can be used instead.

Parameters
Parameter Description
socketDescriptor The socket number to check on the

amount of waiting bytes
Returns

Value Meaning
>=0 Number of bytes waiting to be read
-1 An error has occurred.

tfGetWaitingBytes can fail for the following reason:

TM_ EBADF The socket descriptor is invalid.

Turbo Treck Real-Time TCP/IP User’s Manual

5.80

tfGetZeroCopyBuffer

#include <trsocket.h>

ttUserMessage tfGetZeroCopyBuffer
(
int size,
char ** dataPtrPtr
);

Function Description
This function is used to get a Zero Copy Buffer. This buffer can then be used
with tfZeroCopySend and tfZeroCopySendTo for zero copy send functions. This
is a TRUE zero copy if the device driver supports DMA sending.

Parameters
Parameter Description
size The size of the buffer to be used for

the zero copy.
dataPtrPtr Pointer to a pointer that is the

beginning of the user’s data area.
This is where the user can store the
data to be sent.

Returns
The Zero Copy buffer or (ttUserMessage *)0 if not successful

tfGetZeroCopyBuffer will fail for the following reason:

There was insufficient user memory availbale to complete the operation.

Programmer’s Reference

5.81

tfInetToAscii

#include <trsocket.h>

void tfInetToAscii
(
unsigned long ipAddress,
char * outputBuffer
);

Function Description
This function is used to convert an IP address to the dotted string notation.

Parameters
Parameter Description
ipAddress The IP address to convert
outputBuffer A character buffer to store the

result into. It is the caller’s
responsibility to ensure that there is
ample room in the buffer for the null
terminated string. The output will
never be longer than 16 bytes.

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

5.82

tfIpScatteredSend

#include <trsocket.h>

int tfIpScatteredSend
(
ttUserInterface interfaceHandle,
ttUserBlockPtr userBlockPtr,
int userBlockCount,
ttUserFreeFuncPtr userFreeFunctionPtr
);

Function Description
This function allows the user to send an IP datagram directly to the stack without
using a socket interface, without the Turbo Treck stack changing any IP header
field (except if IP fragmentation is needed), and directly from user owned scattered
data buffers. Even the IP header itself could be scattered among several data buffers.
The user passes a pointer to an array of user block data of type ttUserBlock and the
number of elements in the array. Each ttUserBlock element contains a pointer to a
user buffer, a pointer to the beginning of the user data in the user buffer, and the
user data length in the user buffer. Upon return from this routine, the user can reuse
the ttUserBlock array, but the Turbo Treck stack owns the user buffers that were
pointed to by the ttUserBlock elements. The userFreeFunction will be called by the
Turbo Treck stack for each user buffer, when the data has been sent out on the
network and the device driver no longer needs to access the data in the user buffer.
An example of tfIpScatteredSend() usage is shown in the loop back test module
txscatlp.c.

If the user uses a preemptive kernel, i.e.
TM_TRECK_PREEMPTIVE_KERNEL is defined in trsystem.h, it is the user’s
responsibility to ensure that the user free function is re-entrant, as it could
potentially be called from different threads.

Parameters
Parameter Description
interfacehandle If the user knows the interface the

packet is to be sent out to, then this
field is non-null.

userBlockPtr Pointer to the first element (data
type ttUserBlock) of the user array
that contains information about the
user scattered data.

UserBlockCount Number of elements in the above
array

Programmer’s Reference

5.83

ttUserBlock data type:

typedef struct tsUserBlock
{
char * userBufferPtr; Pointer to buffer (passed to the free routine)
char * userDataPtr; Pointer to beginning of data
int userDataLength; Data length
} ttUserBlock;

Function prototype for the user supplied user data free call back function:
int userFreeFunc (char TM_FAR * bufferPtr);

Returns
Value Meaning
TM_ENOERROR Success
TM_EINVAL One of the parameters is bad, i.e.

userBlockPtr is null, or
userBlockCount is less or equal to 0
or userFreeFunction is null, or
interface handle is invalid

TM_ENOBUFS Could not allocate Turbo Treck
headers to send the data or could not
allocate an ARP entry

TM_EFAULT Bad packet. The IP header length is
bigger than the total data length in the
user scattered buffers or IP header
size is bigger than the maximum
allowed by the RFC, i.e. 60, or it less
than the minimum, 20

TM_EMSGSIZE Data length of the IP datagram is
bigger than the IP MTU, and
fragmentation is not allowed

TM_EHOSTUNREACH No route to host
TM_EDESTADDRREQ Destination IP address in the IP

header is zero.
TM_ENOENT No interface could be found to send

the packet out (only if destination IP
address is limited broadcast)

TM_ENXIO Outgoing interface is closed
TM_EIO Interface transmit queue if full (only if

interface transmit queue is used).
Other error code Returned by device driver send

function

Turbo Treck Real-Time TCP/IP User’s Manual

5.84

tfRawSocket

#include <trsocket.h>

int tfRawSocket
(
ttUserIpAddress ipAddress,
int protocol
);

Function Description
This function creates a raw socket. A raw socket enables the user to either send
data above the IP layer, or to send data with the IP header. In the latter case, the user
must set the IPO_HDRINCL option at the IP level in the setsockopt call. When the
user receives data on the raw socket, the IP header is always included. Given a
transport layer protocol and IP address, tfRawSocket returns a raw socket bound
to TM_RAW_IP_PORT and ipAddress. Note that ipAddress can be a zero IP
address if the user does not want to bind to a specific IP address. The user can use
this function only if TM_USE_RAW_SOCKET has been defined in trsystem.h. An
example of tfRawSocket usage is shown in the loop back test module txscatlp.c.

Parameters
Parameter Description
ipAddress User IP address to bind the raw

socket with.
Protocol Protocol above IP, for example:

IPPROTO_IGMP IPPROTO_ICMP
IPPROTO_OSPF

Returns
Value Meaning
>= 0 Success
TM_SOCKET_ERROR Call failed. The user can retrieve the

error code with the
tfGetSocketError
(TM_SOCKET_ERROR) API. See
below for table of possible error
codes.

Programmer’s Reference

5.85

tfRawSocket will fail if:

TM_EINVAL Invalid protocol for raw socket
send/receive.
The following protocols are
disallowed:
IPPROTO_UDP
IPPROTO_TCP

TM_EINVAL There is no interface configured
with the specified IP address (only
if ipAddress parameter is not zero).

TM_EADDRINUSE A raw socket has already been
opened for this protocol.

Turbo Treck Real-Time TCP/IP User’s Manual

5.86

tfRecvFromTo

#include <trsocket.h>

int tfRecvFromTo

(

int socketDescriptor,

Char * bufferPtr,

int bufferLength,

int flags,

struct sockaddr * fromAddressPtr,

int * addressLengthPtr,

struct sockaddr * toAddressPtr

);

Function Description

tfRecvFromTo behaves the same as recvfrom except for the use of the parameter
toAddressPointer. This parameter specifies the address to which data was sent.
tfRecvFromTo is used to receive messages from another socket. tfRecvFromTo
may be used to receive data on a socket whether it is in a connected state or not, but
not on a TCP socket. socketDescriptor is a socket created with socket. If
fromAddressPtr is not a NULL pointer, the source address of the message is filled
in. If toAddressPtr is not a NULL pointer, the destination address of the message is
filled in. addressLengthPtr is a value-result parameter, initialized to the size of the
buffer associated with fromAddressPtr, and with toAddressPtr, and modified on
return to indicate the actual size of the address stored there. The length of the
message is returned. If a message is too long to fit in the supplied buffer, excess
bytes may be discarded depending on the type of socket the message is received
from (see socket). If no messages are available at the socket, the receive call waits
for a message to arrive, unless the socket is non-blocking, or the MSG_DONTWAIT
flag is set in the flags parameter, in which case -1 is returned with socket error being
set to EWOULDBLOCK.

select may be used to determine when more data arrives, or/and when out-of-band
data arrives.

tfRegisterSocketCB may be used to asynchronously determine when more data
arrives, or/and when out-of-band data arrives.tfRegisterIpForwCB

Programmer’s Reference

5.87

Parameters

Parameter Description
socketDescriptor The socket descriptor to use to

receive data
bufferPtr The buffer to store the received

data
bufferLength The length of the buffer to store the

received data
flags MSG_DONTWAIT: Don’t wait for

data 0: wait for data to come in
fromAddressPtr Where to store the address the data

came from
addressLengthPtr Length of the area pointed to by

fromAddressPtr, or toAddressPtr
toAddressPtr Where to store the address the data

was sent to
Returns

Value Meaning
>=0 Number of bytes actually sent on

the socket
-1 An error occurred, error can be

retrieved with tfGetSocketError
tfRecvFromTo can fail for the following reasons:

TM_EBADF The socket descriptor is invalid
TM_ENOBUFS There was insufficient user memory

available to complete the operation
TM_EMSGSIZE The message was too long
TM_EPROTOTYPE TCP protocol requires usage of

recv, not tfRecvFromTo
TM_EWOULDBLOCK The socket is marked as non-

blocking and the tfRecvFromTo
operation would block

Turbo Treck Real-Time TCP/IP User’s Manual

5.88

tfRegisterIpForwCB
#include <trsocket.h>

int tfRegisterIpForwCB
(
ttUserIpForwCBFuncPtr ipForwCBFuncPtr
);

Function Description
Used to register a function for the Turbo Treck stack to call when a packet cannot
be forwarded. The call back function parameters will indicate the source IP address,
and destination IP address of the packet in network byte order. This is useful to let
the user know that a packet cannot be forwarded because a dial up interface is
closed for example. In that case the user call back function could trigger a dial-up on
demand to allow forwarding of subsequent packets. If the user does not want to
enable or configure the interface, then the call back function should return a non-
zero error code. In that case the stack will send a host unreachable ICMP error
message as if no call back function had been registered. If the user wants to enable
or configure the interface, then the call back function should return
TM_ENOERROR. In that case the Turbo Treck stack will silently drop the packet
without sending an ICMP error message, allowing the sender to try and send more
data.

Parameters
Parameter Description
ipForwCBFuncPtr Pointer to user call back function

that returns an integer as described
above, and that takes two
parameters of type
ttUserIpAddress, the first one
being the source IP address in
network byte order of the IP
datagram to be forwarded, and the
second one being its destination IP
address in network byte order.

Function prototype for the user supplied IP forward call back function:
int ipForwCBFunc (ttUserIpAddress srcIpAddress,

ttUserIpAddress destIpAddress);
Returns

Value Meaning
TM_ENOERROR This function always returns

TM_ENOERROR

Programmer’s Reference

5.89

tfResetConnection

#include <trsocket.h>

int tfResetConnection
(
int socketDescriptor
);

Function Description
This function is used to abort a connection on a socket. It only works with TCP
(STREAM) sockets and sends a RST and discards all outstanding data.

Parameters
Parameter Description
socketDescriptor The socket descriptor to Reset

Returns
Value Meaning
 0 Operation completed successfully
-1 An error occurred

tfResetConnection can fail for the following reasons:

TM_EBADF The socket descriptor is invalid
TM_EOPNOTSUPP The socket is not a STREAM

socket

Turbo Treck Real-Time TCP/IP User’s Manual

5.90

tfSendToFrom

#include <trsocket.h>

int tfSendToFrom
(
int socketDescriptor,
char * bufferPtr,
int bufferLength,
int flags,
const struct sockaddr *toAddressPtr,
int addressLength,
const struct sockaddr *fromAddressPtr
);

Function Description

tfSendToFrom behaves the same as sendto except for the use of the parameter
fromAddressPointer. This parameter specifies the address from where data is to
be sent. tfSendToFrom is used to transmit a message to another transport end-
point. tfSendToFrom may be used at any time (either in a connected or uncon-
nected state), but not for a TCP socket. socketDescriptor is a socket created
with socket. The address of the target is given by toAddressPtr, with
addressLength specifying its size.

 If the message is too long to pass atomically through the underlying protocol,
then –1 is returned with the socket error being set to TM_EMSGSIZE, and the
message is not transmitted.

A return value of -1 indicates locally detected errors only. A positive return value
does not implicitly mean the message was delivered, but rather that it was sent.

If the socket does not have enough buffer space available to hold the message
being sent, and is in blocking mode, tfSendToFrom blocks. If it is in non-blocking
mode or the MSG_DONTWAIT flag has been set in the flags parameter, –1 is
returned with the socket error being set to TM_EWOULDBLOCK.
The select call may be used to determine when it is possible to send more data.

Programmer’s Reference

5.91

Parameters

Parameter Description
socketDescriptor The socket descriptor to use to

send data
bufferPtr The buffer to send
bufferLength The length of the buffer to send
flags MSG_DONTWAIT: Don’t wait for

room in the socket send queue 0:
wait for room in the socket send
queue

toAddressPtr The address to send the data to
addressLength The length of the area pointed to by

toAddressPtr, or fromAddressPtr
fromAddressPtr The address to send the data from

Returns
Value Meaning
>=0 Number of bytes actually sent on

the socket
-1 An error occurred, error can be

retrieved with tfGetSocketError
tfSendToFrom can fail for the following reasons:

TM_EBADF The socket descriptor is invalid
TM_ENOBUFS There was insufficient user memory

available to complete the operation
TM_EMSGSIZE The message was too long
TM_EPROTOTYPE TCP protocol requires usage of

send, not tfSendToFrom
TM_EWOULDBLOCK The socket is marked as non-

blocking and the send operation
would blocktfSendToInterface

Turbo Treck Real-Time TCP/IP User’s Manual

5.92

tfSendToInterface
#include <trsocket.h>

int tfSendToInterface
(
int socketDescriptor,
char * bufferPtr,
int bufferLength,
int flags,
const struct sockaddr* toPtr,
int toLength,
ttUserInterface interfaceHandle,
unsigned char mhomeIndex
);

Function Description
tfSendToInterface is used to transmit a message to another transport end-point.
tfSendToInterface may be used at any time (either in a connected or unconnected
state), but not for a TCP socket. socketDescriptor is a socket created with socket.
The address of the target is given by to with toLength specifying its size.

 If the message is too long to pass atomically through the underlying protocol, then
–1 is returned with the socket error being set to TM_EMSGSIZE, and the message
is not transmitted.

A return value of -1 indicates locally detected errors only. A positive return value
does not implicitly mean the message was delivered, but rather that it was sent.

If the socket does not have enough buffer space available to hold the message
being sent, and is in blocking mode, tfSendToInterface blocks. If it is in non-
blocking mode or the MSG_DONTWAIT flag has been set in the flags parameter, –
1 is returned with the socket error being set to TM_EWOULDBLOCK.

The select call may be used to determine when it is possible to send more data.

Note: If tfSendToInterface is used on an Ethernet interface with the interface
configured temporarily with a zero IP address (TM_DEV_IP_USER_BOOT
flag), then the only allowed destination IP addresses are either limited
broadcast (i.e. all F’s), or multicast addresses.

Programmer’s Reference

5.93

Parameters
Parameter Description
socketDescriptor The socket descriptor to use to

send data.
bufferPtr The buffer to send.
bufferLength The length of the buffer to send.
toPtr The address to send the data to.
toLength The length of the to area pointed to

by toPtr.
flags See below
InterfaceHandle Interface to send the data through
mhomeIndex Multihome index on the configured

interface.
The flags parameter is formed by ORing one or more of the following:
MSG_DONTWAIT Don’t wait for data send to complete, but rather return

immediately.
MSG_DONTROUTE The SO_DONTROUTE option is turned on for the

duration of the operation. Only diagnostic or routing
programs use it.

Returns
Value Meaning
>=0 Number of bytes actually sent on

the socket
 -1 An error occurred

tfSendToInterface will fail if:
TM_EBADF The socket descriptor is invalid.
TM_ENOBUFS There was insufficient user memory

available to complete the operation.
TM_EHOSTUNREACH No route to destination host.
TM_ EMSGSIZE The socket requires that message

be sent atomically, and the message
was too long.

TM_EPROTOTYPE TCP protocol requires usage of
send not tfSendToInterface.

TM_EWOULDBLOCK The socket is marked as non-
blocking and the send operation
would block.

TM_EINVAL One of the parameters is bad: the
interface handle or multihome index
is invalid, or the bufferPtr is null, or
bufferLength is zero.

Turbo Treck Real-Time TCP/IP User’s Manual

5.94

tfSocketArrayWalk

#include <trsocket.h>

int tfSocketArrayWalk
(
ttWalkCBFuncPtr callBackFuncPtr,
ttUserVoidPtr argPtr
);

Function Description
This function is used to walk the list of open sockets, calling the user supplied
call back function, passing the socket descriptor, and user argument argPtr, to it
until we reach the end of the list, or the user call back function returns an error
whichever comes first. Return error value from the call back function to the user.
Parameters

Parameter Description
callBackFuncPtr The function pointer to the user

function to call for each open
socket. See below for function
prototype.

argPtr User pointer to be passed back to
the call back function.

Function prototype for the user supplied call back function:
int callBackFunc
(
int socketDescriptor,
ttUserVoidPtr argPtr
);

Returns
Value Meaning
0 Success
TM_EINVAL The callback function pointer is

null.
Other As returned by the user call back

function.

Programmer’s Reference

5.95

tfSocketScatteredSendTo

#include <trsocket.h>

int tfSocketScatteredSendTo

(
int socketDescriptor,
ttUserBlockPtr userBlockPtr,
int userBlockCount,
ttUserFreeFuncPtr userFreeFunction,
int flags,
const struct sockaddr TM_FAR* toAddressPtr,
int toAddressLength
);

Function Description
This function allows the user to send data on a non-TCP socket directly from user
owned scattered data buffers. The user passes a pointer to an array of user block
data of type ttUserBlock, and the number of elements in the array. Each ttUserBlock
element contains a pointer to a user buffer, a pointer to the beginning of the user
data in the user buffer, and the user data length in the user buffer. Upon return from
this routine, the user can reuse the array of ttUserBlock, but the Turbo Treck stack
owns the user buffers that were pointed to by the ttUserBlock elements. The only
exception is when TM_SOCKET_ERROR is returned and the errorCode retrieved
with tfGetSocketError() is TM_EWOULDBLOCK. In that case, the user still owns
the buffers and should try to resend the same buffers later on. The userFreeFunction
will be called by the Turbo Treck stack for each user buffer when the data has been
sent out on the network and the device driver no longer needs to access the data in
the user buffer. An example of tfSocketScatteredSendTo() usage is shown in the
loop back test module txscatlp.c

If the user uses a preemptive kernel, i.e.
TM_TRECK_PREEMPTIVE_KERNEL is defined in trsystem.h, it is the user’s
responsibility to ensure that the user free function is re-entrant, as it could
potentially be called from different threads.

Turbo Treck Real-Time TCP/IP User’s Manual

5.96

Parameters
Parameter Description
socketDescriptor As returned by a socket() call
UserBlockPtr Pointer to the first element of the

user array that contains information
about the user scattered data.

userBlockCount number of elements in the above
array

userFreeFunction Pointer to the user free function
that will be called for each user
buffer when the data in the user
buffer no longer need to be
accessed. This function is called by
the Turbo Treck stack with the
pointer to the user buffer as a
parameter.

flags 0, or MSG_DONTWAIT. If
MSG_DONTWAIT, the call is non-
blocking for the duration of the call.
If flag is 0, then it is blocking if the
socket is in blocking mode, non-
blocking otherwise.

toAddressPtr The address to send the data to. If
the user had called connect on the
socket, then toAddressPtr should
be null.

toAddressLength The length of the address

 tUserBlock data type:
typedef struct tsUserBlock
{
char * userBufferPtr; Pointer to buffer (passed to the free
routine)
char * userDataPtr; Pointer to beginning of data
int userDataLength; Data length
} ttUserBlock;

Function prototype for the user supplied user data free call back function:
int userFreeFunc (char TM_FAR * bufferPtr);

Programmer’s Reference

5.97

Returns
Value Meaning
> 0 Number of bytes transmitted/queued.

Turbo Treck will free the user buffers.
TM_SOCKET_ERROR Call failed. The user can retrieve the

error code with the tfGetSocketError
(socketDescriptor) API. See below for
table of possible error codes.

tfSocketScatteredSendTo will fail if:

TM_EWOULDBLOCK Not enough room to queue the data in
the socket send queue. User still owns
the data user buffers, and is responsible
for resending them later on.

TM_EINVAL One of the parameters is bad, i.e.
userBlockPtr is null, or userBlockCount
is less or equal to 0 or userFreeFunction
is null, or socket is a TCP socket with
toAddressPtr being non-zero, or flags is
not zero, or MSG_DONTWAIT.

TM_ENOBUFS Not enough memory to allocate the
Turbo Treck headers

TM_EBADF The socket descriptor is invalid
TM_EMSGSIZE The data length was bigger than the

send queue, or the data length caused
the IP datagram to be bigger than the IP
MTU, and IP fragmentation is not
allowed.

TM_EPROTOTYPE Attempt to send on a connected TCP
socket

TM_EHOSTUNREACH No route to host
TM_ENOENT No interface could be found to send the

packet out (limited broadcast
destination IP address.)

TM_ENXIO Outgoing interface is closed
TM_EIO Interface transmit queue if full (only if

interface transmit queue is used).
Other error code Returned by device driver send

function.

Turbo Treck Real-Time TCP/IP User’s Manual

5.98

tfZeroCopyRecv

#include <trsocket.h>

int tfZeroCopyRecv
(
int socketDescriptor,
ttUserMessage * bufferHandlePtr,
char ** dataPtrPtr,
int maxBufferLength,
int flags
);

Function Description
This function is used to recv a zero copy message. It operates identically to recv
with the exception that it takes a zero copy buffer handle as a parameter and puts
the beginning of the data into a passed pointer. However, it does not support the
MSG_OOB flag, since there is only one byte of out-of-band data, and it would be
inefficient to use the tfZeroCopyRecv in that case. To recv out-of-band data, the
recv call should be used instead.

Note: The user must call tfFreeZeroCopyBuffer in order to free the buffer after
the user has finished with it.

Parameters
Parameter Description
socketDescriptor The socket descriptor to send data

to.
bufferHandlePtr The zero copy buffer that contains

the message
dataPtrPtr A pointer to a char pointer where

the start of the data is stored.
maxBufferLength The length of the message
flags See below.

Programmer’s Reference

5.99

The flags parameter is formed by ORing one or more of the following:

MSG_DONTWAIT Don’t wait for data, but rather
return immediately

MSG_PEEK “Peek” at the data present on the
socket; the data is returned, but not
consumed, so that a subsequent
receive operation will see the same
data.

MSG_SCATTERED (Non TCP sockets). If the receive
data is scattered, it will be passed to
the user as is, and will not get
copied into a new buffer to make
the data contiguous. Upon return,
bufferHandlePtr will point to a
scattered buffer, as explained below.

MSG_SCATTERED
Description
When the MSG_SCATTERED bit is set in the flags parameters, then upon
successful return from tfZeroCopyRecv, the bufferHandlePtr parameter should be
cast to a pointer to a ttUserPacket structure, where ttUserPacket is defined as
follows:

typedef struct tsUserPacket
{
 struct tsUserPacket * pktuLinkNextPtr;
 tt8BitPtr pktuLinkDataPtr;
 ttPktLen pktuLinkDataLength;
 ttPktLen pktuChainDataLength;
 int pktuLinkExtraCount;
} ttUserPacket;

ttUserPacket fields Description
ptkuLinkNextPtr points to the next ttUserPacket

structure
pktuLinkDataPtr points to the data in the link
pktuLinkDataLength contains the length of that data
pktuLinkChainDataLength contains the total length of the

scattered data. Its value is ony valid
in the first link

pktuLinkExtraCount Contains the number of extra links
besides the first one. Its value is
only valid in the first link.

Turbo Treck Real-Time TCP/IP User’s Manual

5.100

Example
The following code extract shows how to navigate a scattered recv buffer, and
copies it into bufferArray[].

#define TM_BUF_ARRAY_SIZE 3000

char bufferArray[TM_BUF_ARRAY_SIZE];

 retCode = tfZeroCopyRecv(ssd,
 &recvMessageHandle,
 &dataPtr,
 sizeof(bufferArray),
 MSG_SCATTERED);
 if (retCode > 0)
 {
 recvdLength += retCode;
 tm_assert(testzUdpToFrom, retCode == sendDataLength);
 scatteredRecvCopyNCheck(recvMessageHandle,
 (ttUser8BitPtr)dataPtr,
 (ttPktLen)retCode);
 (void)tfFreeZeroCopyBuffer(recvMessageHandle);
 }

void scatteredRecvCopyNCheck(ttUserMessage recvMessageHandle,
 ttUser8BitPtr dataPtr,
 ttPktLen msgLength)
{
 ttUserPacketPtr recvPacketUPtr;
 char * bufferPtr;
 int extraCount;

 extraCount = -1;
 recvPacketUPtr = (ttUserPacketPtr)recvMessageHandle;

Programmer’s Reference

5.101

 bufferPtr = &bufferArray[0];
 tm_assert(testzUdp, msgLength == recvPacketUPtr->pktuChainDataLength);
 tm_assert(testzUdp, msgLength <= sizeof(bufferArray));
 tm_assert(testzUdp, dataPtr == recvPacketUPtr->pktuLinkDataPtr);
 do
 {
 tm_assert(testzUdp,
 msgLength >= recvPacketUPtr->pktuLinkDataLength);
 tm_assert(testzUdp, recvPacketUPtr->pktuLinkDataPtr
 != (ttUser8BitPtr)0);
 tm_bcopy(recvPacketUPtr->pktuLinkDataPtr,
 bufferPtr,
 recvPacketUPtr->pktuLinkDataLength);
 bufferPtr += recvPacketUPtr->pktuLinkDataLength;
 msgLength -= recvPacketUPtr->pktuLinkDataLength;
 recvPacketUPtr = recvPacketUPtr->pktuLinkNextPtr;
 extraCount++;
 }
 while ((msgLength != (ttPktLen)0)
 && (recvPacketUPtr != (ttUserPacketPtr)0));
 tm_assert(testzUdp, msgLength == 0);
 recvPacketUPtr = (ttUserPacketPtr)recvMessageHandle;
 tm_assert(testzUdp, extraCount == recvPacketUPtr->pktuLinkExtraCount);
}

Note: See also tfZeroCopySend
Returns

Value Meaning
 0 EOF
>0 Number of bytes received
 -1 An error has occurred

tfZeroCopyRecv will fail if:
TM_EBADF The socket descriptor is invalid.
TM_ENOBUFS There was insufficient user memory

available to complete the operation.

Turbo Treck Real-Time TCP/IP User’s Manual

5.102

TM_ EMSGSIZE The socket requires that message
be received atomically, and
bufferLength was too small.

TM_EWOULDBLOCK The socket is marked as non-
blocking or the MSG_DONTWAIT
flag is used and no data is available
to be read.

TM_ESHUTDOWN The remote socket has closed the
connection, and there is no more
data to be received. (TCP socket
only).

TM_EINVAL One of the parameter is invalid.
TM_ENOTCONN Socket is not connected.

Programmer’s Reference

5.103

tfZeroCopyRecvFrom

#include <trsocket.h>

int tfZeroCopyRecvFrom
(
int socketDescriptor,
ttUserMessage * bufferHandlePtr,
char ** dataPtrPtr,
int maxBufferLength,
int flags,
struct sockaddr * fromAddressPtr,
int fromAddressLength
);

Function Description
This function is used to recv a zero copy message. It operates identically to
recvfrom with the exception that it takes a zero copy buffer handle as a parameter
and puts the beginning of the data into a passed pointer.

Note: The user must call tfFreeZeroCopyBuffer in order to free the buffer after
the user has finished with it.

Parameters
Parameter Description
socketDescriptor The socket descriptor to send data

to
bufferHandlePtr The zero copy buffer that contains

the message
dataPtrPtr A pointer to a char pointer where

the start of the data is stored
maxBufferLength The maximum length of the message
flags See below
fromAddressPtr The address to packet came from
fromAddressLength The length of the address

Turbo Treck Real-Time TCP/IP User’s Manual

5.104

The flags parameter is formed by ORing one or more of the following:

MSG_DONTWAIT Do not wait for data, but rather
return immediately

MSG_PEEK “Peek” at the data present on the
socket; the data is returned, but not
consumed, so that a subsequent
receive operation will see the same
data.

MSG_SCATTERED If the receive data is scattered, it
will be passed to the user as is, and
will not get copied into a new buffer
to make the data contiguous. Upon
return, bufferHandlePtr will point to
a scattered buffer, as explained
below.

MSG_SCATTERED
Description
When the MSG_SCATTERED bit is set in the flags parameters, then upon
successful return from tfZeroCopyRecvFrom, the bufferHandlePtr parameter
should be cast to a pointer to a ttUserPacket structure, where ttUserPacket is
defined as follows:

typedef struct tsUserPacket
{
 struct tsUserPacket * pktuLinkNextPtr;
 tt8BitPtr pktuLinkDataPtr;
 ttPktLen pktuLinkDataLength;
 ttPktLen pktuChainDataLength;
 int pktuLinkExtraCount;
} ttUserPacket;

ttUserPacket fields Description
ptkuLinkNextPtr Points to the next ttUserPacket

structure
pktuLinkDataPtr Points to the data in the link
pktuLinkDataLength Contains the length of that data
pktuLinkChainDataLength Contains the total length of the

Scattered data. Its value is ony
valid in the first link

pktuLinkExtraCount Contains the number of extra links
besides the first one. Its value is
only valid in the first link.

Programmer’s Reference

5.105

Example
The following code extract shows how to navigate a scattered recv buffer, and
copies it into bufferArray[].

#define TM_BUF_ARRAY_SIZE 3000

char bufferArray[TM_BUF_ARRAY_SIZE];

 retCode = tfZeroCopyRecvFrom(ssd,
 &recvMessageHandle,
 &dataPtr,
 sizeof(bufferArray),
 MSG_SCATTERED,
 tempSockAddrFrom.sockPtr,
 &fromAddressLength);
 if (retCode > 0)
 {
 recvdLength += retCode;
 tm_assert(testzUdpToFrom, retCode == sendDataLength);
 scatteredRecvCopyNCheck(recvMessageHandle,
 (ttUser8BitPtr)dataPtr,
 (ttPktLen)retCode);
 (void)tfFreeZeroCopyBuffer(recvMessageHandle);
 }

void scatteredRecvCopyNCheck(ttUserMessage recvMessageHandle,
 ttUser8BitPtr dataPtr,
 ttPktLen msgLength)
{
 ttUserPacketPtr recvPacketUPtr;
 char * bufferPtr;
 int extraCount;

 extraCount = -1;
 recvPacketUPtr = (ttUserPacketPtr)recvMessageHandle;
 bufferPtr = &bufferArray[0];
 tm_assert(testzUdp, msgLength == recvPacketUPtr->pktuChainDataLength);
 tm_assert(testzUdp, msgLength <= sizeof(bufferArray));
 tm_assert(testzUdp, dataPtr == recvPacketUPtr->pktuLinkDataPtr);
 do
 {
 tm_assert(testzUdp,
 msgLength >= recvPacketUPtr->pktuLinkDataLength);
 tm_assert(testzUdp, recvPacketUPtr->pktuLinkDataPtr

Turbo Treck Real-Time TCP/IP User’s Manual

5.106

 != (ttUser8BitPtr)0);
 tm_bcopy(recvPacketUPtr->pktuLinkDataPtr,
 bufferPtr,
 recvPacketUPtr->pktuLinkDataLength);
 bufferPtr += recvPacketUPtr->pktuLinkDataLength;
 msgLength -= recvPacketUPtr->pktuLinkDataLength;
 recvPacketUPtr = recvPacketUPtr->pktuLinkNextPtr;
 extraCount++;
 }
 while ((msgLength != (ttPktLen)0)
 && (recvPacketUPtr != (ttUserPacketPtr)0));
 tm_assert(testzUdp, msgLength == 0);
 recvPacketUPtr = (ttUserPacketPtr)recvMessageHandle;
 tm_assert(testzUdp, extraCount == recvPacketUPtr->pktuLinkExtraCount);
}

Note: See also tfZeroCopySendTo

Returns
Value Meaning
 0 EOF
>0 Number of bytes received
 -1 An error has occurred.

tfZeroCopyRecvFrom will fail if:

TM_EBADF The socket descriptor is invalid.
TM_EINVAL One of the parameters is invalid.
TM_ EMSGSIZE The socket requires that message

be received atomically, and
bufferLength was too small.

TM_EPROTOTYPE TCP protocol requires usage of
tfZeroCopyRecv, not
tfZeroCopyRecvFrom.

TM_EWOULDBLOCK The socket is marked as non-
blocking and no data is available to
be read.

Programmer’s Reference

5.107

tfZeroCopySend

#include <trsocket.h>

int tfZeroCopySend
(
int socketDescriptor,
ttUserMessage bufferHandle,
int bufferLength,
int flags
);

Function Description
This function is used to send a zero copy message. It operates identically to send
with the exception that it takes a zero copy buffer handle as a parameter, and with
the exception that it sends either the whole buffer or nothing.

Note: Once tfZeroCopySend is called, the caller does NOT own the buffer and it
is freed by the TCP/IP stack, except when if fails with a TM_EWOULDBLOCK
error code, in which case the user can either try and send the buffer at a later
time, or free the zero copy buffer using tfFreeZeroCopyBuffer.

Parameters
Parameter Description
socketDescriptor The socket descriptor to send data

to
bufferHandle The zero copy buffer obtained from

tfGetZeroCopyBuffer
bufferLength The length of the message to send
flags See below

The flags parameter is formed by ORing one or more of the following:

MSG_DONTWAIT Don’t wait for data send to
complete, but rather return
immediately.

MSG_OOB Send “out-of-band” data on
sockets that support this notion.
The underlying protocol must also
support “out-of-band” data. Only
SOCK_STREAM sockets created in
the AF_INET address family
support out-of-band data.

MSG_DONTROUTE The SO_DONTROUTE option is
turned on for the duration of the

Turbo Treck Real-Time TCP/IP User’s Manual

5.108

operation. Only diagnostic or
routing programs use it.

MSG_SCATTERED (Non TCP sockets). Set this flag
when sending a scattered zero copy
recv buffer received with
tfZeroCopyRecv.
(See tfZeroCopyRecv.)
Note that to send a user scattered
buffer (not obtained via a call to
tfZeroCopyRecv), then
tfSocketScatteredSendTo can be
used.

Returns
Value Meaning
>=0 Number of bytes sent
 -1 An error has occurred

tfZeroCopySend will fail if:

TM_EBADF The socket descriptor is invalid
TM_ENOBUFS There was insufficient user memory

available to complete the operation.
TM_EHOSTUNREACH Non-TCP socket only. No route to

destination host.
TM_ EMSGSIZE The socket requires that message to

be sent atomically, and the message
was too long.

TM_EWOULDBLOCK The socket is marked as non-
blocking and the buffer length
exceeds the available space left in
the send queue.

TM_ENOTCONN Socket is not connected.
TM_ESHUTDOWN User has issued a write shutdown or

a tfClose call. (TCP socket only)
TM_EFAULT bufferHandle does not correspond

to a zero copy buffer.
TM_EINVAL One of the parameters is bad: the

bufferLength <= 0, or a flag not
listed above is set.

Programmer’s Reference

5.109

tfZeroCopySendTo

#include <trsocket.h>

int tfZeroCopySendTo
(
int socketDescriptor,
ttUserMessage bufferHandle,
int bufferLength,
int flags,
const struct sockaddr * toAddressPtr,
int toAddressLength
);

Function Description
This function is used to send a zero copy message. It operates identically to sendto
with the exception that it takes a zero copy buffer handle as a parameter.
Note: Once tfZeroCopySendTo is called, the caller does NOT own the buffer
and it is freed by the TCP/IP stack, except when if fails with a
TM_EWOULDBLOCK error code, in which case the user can either try and
send the buffer at a later time, or free the zero copy buffer using
tfFreeZeroCopyBuffer.

Parameters
Parameter Description
socketDescriptor The socket descriptor to send data

to
bufferHandle The zero copy buffer obtained from

tfGetZeroCopyBuffer
bufferLength The length of the message to send
flags Special flags for this device.
toAddressPtr The address to send the packet to
toAddressLength The length of the address

The flags parameter is formed by ORing one or more of the following:

MSG_DONTWAIT Don’t wait for data send to
complete, but rather return
immediately.

MSG_DONTROUTE The SO_DONTROUTE option is
turned on for the duration of the
operation. Only diagnostic or
routing programs use it.

Turbo Treck Real-Time TCP/IP User’s Manual

5.110

MSG_SCATTERED Set this flag when sending a
scattered zero copy recv buffer
received with fZeroCopyRecvFrom.
(See tfZeroCopyRecvFrom.)
Note that to send a user scattered
buffer (not obtained via a call to
tfZeroCopyRecvFrom), then
tfSocketScatteredSendTo
can be used.

Returns
Value Meaning
>=0 Number of bytes sent
 -1 An error has occurred

tfZeroCopySendTo will fail if:

TM_EBADF The socket descriptor is invalid
TM_EHOSTUNREACH No route to destination host
TM_ EMSGSIZE The socket requires that message be sent

atomically, and the message was too long.
TM_EPROTOTYPE TCP protocol requires usage of

tfZeroCopySend not tfZeroCopySendTo.
TM_EWOULDBLOCK The socket is marked as non-blocking and

the send operation would block.
TM_EFAULT bufferHandle does not correspond to a

zero copy buffer.
TM_EINVAL One of the parameters is bad: the

bufferLength <= 0, or a flag not listed
above is set, or toAddressPtr is null, or
toAddressLength does not equal the
sizeof(struct sockaddr_in).

Programmer’s Reference

5.111

Call Back Function Registration

tfRegisterSocketCB

#include <trsocket.h>

int tfRegisterSocketCB
(
int socketDescriptor,
ttUserSocketCBFuncPtr socketCBFuncPtr,
int eventFlags
);

Function Description
This function is used to register a function call upon completion of one of more
socket events. This allows the user to issue non-blocking calls, and get a call back
upon completion of one or more socket events as described in the table below. The
call back function will be called repeatedly each time one or more of the events
registered for occur until the user cancel the event(s) with another call to
tfRegisterSocketCB with a new event flag value. For example, if the user register
for a recv event (TM_CB_RECV), then the call back function will be called, in the
context of the receive task, every time a packet is received from the network and
queued in the socket receive queue.

Note that most of the call back calls will be made in the context of the receive task.
TM_CB_SOCKET_ERROR, TM_CB_RESET, TM_CB_CLOSE_COMPLETE events
call backs could be made in the context of an application task or the receive task. In
all the other events, call backs will be made in the context of the receive task.
Therefore processing should be kept at a minimum in the call back function. In a
multi-tasking environment, the user call back function should set a flag or increase
a counter and signal the user application task.

Function prototype for the user supplied socket call back function:

void SocketCBFunc
(
int socketDescriptor,
int eventFlags
);

Example
To register for incoming data, incoming out-of-band data and remote close event
notifications on socket descriptor sd:

retCode = tfRegisterSocketCB (sd, socketCBFunc,
TM_CB_RECV|TM_CB_RECV_OOB|TM_CB_REMOTE_CLOSE);

Turbo Treck Real-Time TCP/IP User’s Manual

5.112

Parameters
Parameter Description
socketDescriptor The socket descriptor to register

the call back for.
sockettCBFuncPtr The function pointers of the user

function to call when one or more of
the registered events occur. See
below for function prototype.

eventFlags One or more of the flags described
below and OR’ed together.

EventFlags Description
TM_CB_CONNECT_COMPLT Register for a connection complete

call back (TCP socket only).
TM_CB_ACCEPT Register for a call back when a remote

host has established a connection to
our listening server (TCP socket
only).

TM_CB_RECV Register for a call back when incoming
data has arrived from our peer.

TM_CB_RECV_OOB Register for a call back when out-of-
band data has arrived from our peer
(TCP socket only).

TM_CB_SEND_COMPLT Register for a call back when the data
that we are sending has been acked
by the peer host (TCP socket only).

TM_CB_REMOTE_CLOSE Register for a call back when our peer
has shutdown the connection (TCP
socket only).

TM_CB_SOCKET_ERROR Register for a call back when an error
occured on the connection.

TM_CB_RESET Register for a call back when the peer
has sent a reset on the connection
(TCP socket only).

TM_CB_CLOSE_COMPLT Register for a call back when the user
issued close has completed (TCP
socket only).

TM_CB_WRITE_READY Indicates that there is more room on
the send queue. The user can now
send more data on the connection
given by the socketDescriptor.

Programmer’s Reference

5.113

When one or more of these events occur, the Turbo Treck stack calls the user
supplied call back function socketCBFunc(socketDescriptor, eventFlags), where
socketDescriptor is the socket descriptor as given by the user in
tfRegisterSocketCB, and eventFlags contain one or more of the events specified
by the user, that have occured. Described below are the action(s) to be taken by the
user in the user supplied call back function upon receiving any one of the socket
events:

EventFlags Description
TM_CB_CONNECT_COMPLT Non-blocking connect issued earlier

by the user has now completed, and
the connection is established with
the peer on the socketDescriptor.
The user is now able to send and
recv data on the connection given
by the socketDescriptor.

TM_CB_ACCEPT A remote host has established a
connection to the listening server
socketDescriptor. The user can
now issue an accept call to retrieve
the socket descriptor of the newly
established connection.

TM_CB_RECV Incoming data has arrived on the
connection given by
socketDescriptor. The user can
now issue any of the allowed recv
calls for the protocol associated
with the socket to retrieve the
incoming data.

TM_CB_RECV_OOB Incoming out-of-band data has
arrived on the connection given by
socketDescriptor. The user can use
the appropriate method to retrieve
the out of band data as described in
the recv section above.

Turbo Treck Real-Time TCP/IP User’s Manual

5.114

TM_CB_SEND_COMPLT Some sent data has been received,
and acked by the peer. The user can
issue tfGetSendCompltBytes to
retrieve the actual amount of bytes
that have been received and acked
since the last call to
tfGetSendCompltBytes.

TM_CB_REMOTE_CLOSE Our peer has shutdown the
connection (sent a FIN). No more
new data will be coming. The user
needs to empty its receive queue
using any of the recv calls and then
close the connection (using
tfClose).

TM_CB_WRITE_READY Indicates that there is more room on
the send queue. The user can now
send more data on the connection
given by the socketDescriptor.

TM_CB_SOCKET_ERROR An error has occured on the
connection. The user can issue a
send or recv call to retrieve the error
as described in the send and recv
sections. Note that recv will return
all outstanding incoming data
before returning the error. The user
should then issue tfClose to close
the connection.

TM_CB_RESET The peer has sent a RESET. The
user needs to issue tfClose to close
the socket.

TM_CB_CLOSE_COMPLT The user issued tfClose has now
completed.

Returns
Value Meaning
 0 Success
-1 An error has occurred

tfRegisterSocketCB will fail if:
TM_EBADF The socket descriptor is invalid.
TM_EINVAL socketCBFuncPtr is NULL and

eventFlags is non-zero.

Programmer’s Reference

5.115

tfRegisterSocketCBParam

#include <trsocket.h>

int tfRegisterSocketCBParam
(
int socketDescriptor,
ttUserSocketCBParamFuncPtr socketCBParamFuncPtr,
void * socketUserPtr,
int eventFlags
);

Function Description
This function is similar to tfRegisterSocketCB, and like tfRegisterSocketCB, it is
used to register a function call upon completion of one of more socket events. It
also allows the user to specify a user parameter that will be passed as a parameter to
the call back function.
Function prototype for the user supplied socket call back function:
void socketCBParamFunc

(int
socketDescriptor, void *
socketUserPtr, int
eventFlags);

Parameters
Parameter Description
socketDescriptor The socket descriptor to register

the call back for
sockettCBFuncPtr The function pointers of the user

function to be called when one or
more of the registered events occur.
See below for function prototype.

socketUserPtr A user pointer, that will be passes
by the call back function.

eventFlags One or more of the flags as
described in the
tfRegisterSocketCB section and
OR’ed together.

Turbo Treck Real-Time TCP/IP User’s Manual

5.116

When one or more of these events occur, the Turbo Treck stack calls the user
supplied call back function socketCBParamFunc (socketDescriptor, socketUserPtr,
eventFlags), where socketDescriptor is the socket descriptor as given by the user
in tfRegisterSocketCBParam, socketUserPtr is the user pointer as given by the
user in tfRegisterSocketCBParam, and eventFlags contain one or more of the
events specified by the user, that have occurred. The action(s) to be taken by the
user in the user supplied call back function upon receiving any one of the socket
events are described in the tfRegisterSocketCB section.

Returns
Value Meaning
 0 Success
-1 An error has occurred.

tfRegisterSocketParamCB will fail if

TM_EBADF The socket descriptor is invalid.
TM_EINVAL socketCBFuncPtr is NULL and

eventFlags is non-zero.

Programmer’s Reference

5.117

Turbo Treck Initialization Functions

tfInitTreckOptions

#include <trsocket.h>

int tfInitTreckOptions
(
int optionName,
unsigned long optionValue
);

Function Description
This call is used to set various options that are used by the Turbo Treck TCP/IP
stack.

Note: This function should be called only before calling tfStartTreck.

Parameters
Parameter Description
optionName The option to change (see below)
optionValue The new value to change it to

Note: The option names marked with an asterisk * can only be set using
tfInitTreckOptions. All the other options are common with tfSetTreckOptions

Option Name Meaning
*TM_OPTION_TICK_LENGTH The time in Milliseconds between

calls to tfTimerUpdate or
tfTimerUpdateIsr. Cannot be set to
0. DEFAULT in TRSYSTEM.H

*TM_OPTION_SOCKETS_MAX The maximum number of sockets
allowed on the system. Allowed
values are between 1 and 0x7FFF -
1. DEFAULT: 64

TM_OPTION_ARP_MAX_RETRY The maximum number of ARP retries
before going into the ARP quiet
time state. DEFAULT: 6

TM_OPTION_ARP_TIMEOUT_TIME The amount of time in seconds
between ARP retries. DEFAULT: 1

TM_OPTION_ARP_QUIET_TIME The length of the ARP quiet time
state in seconds. DEFAULT: 20

Turbo Treck Real-Time TCP/IP User’s Manual

5.118

TM_OPTION_ARP_TTL The length of time that an ARP
entry should be kept in the ARP
cache in seconds. (To disable ARP
aging, set to TM_RT_INF.)
DEFAULT: 600.

TM_OPTION_ARP_MAX_ENTRIES Maximum number of ARP entries in
the ARP cache. Each entry
consumes about 100 bytes. Lower
this value
if your heap space is low.
DEFAULT: 64

TM_OPTION_ARP_SMART Boolean to indicate whether the
ARP logic should store all ARP
mappings broadcast on the local
network, even if we were not
waiting for a reply, or if the request
was not for us. Set this option value
to 0, if your heap space is low.
DEFAULT: 1 (on)

TM_OPTION_ROUTE_MAX_ENTRIES Maximum number of dynamic route
entries in the routing table.
DEFAULT: 10

TM_OPTION_RIP_ENABLE Boolean to enable/disable the
RIPv2 Listener once it has been
started.
DEFAULT: 0. To start RIP, the user
should call tfUseRip.

TM_OPTION_RIP_SEND_MODE The mode used to send RIP
packets. See below. Default:
TM_RIP_2_BROADCAST

TM_OPTION_RIP_RECV_MODE The mode used to receive RIP
packets (see below).
DEFAULT:TM_RIP_1 |TM_RIP_2

TM_OPTION_IP_FORWARDING A boolean to enable IP forwarding
DEFAULT: 0

TM_OPTION_IP_DBCAST_FORWARD A boolean to enable directed
broadcast forwarding DEFAULT: 0

TM_OPTION_IP_FRAGMENT A Boolean to enable IP
fragmentation DEFAULT: 1

TM_OPTION_IP_TTL The initial time-to-live for IP
datagrams DEFAULT: 64

Programmer’s Reference

5.119

TM_OPTION_IP_TOS The default Type-Of-Service for IP
datagrams DEFAULT: 0

TM_OPTION_IP_FRAG _TTL Fragment re-assembly timeout value
in seconds. DEFAULT: 64

TM_OPTION_ICMP_ADDR_MASK_AGENT A boolean to enable/
disable the ICMP address mask
agent. DEFAULT: 0

TM_OPTION_UDP_CHECKSUM A boolean to enable/disable UDP
checksums on outgoing packets.
DEFAULT: 1

TM_OPTION_PMTU_DECREASED_TTL The length of time (in seconds)
before a path MTU estimate
increase is tried, after having
received an ICMP Datagram Too
Big Message error. DEFAULT: 600
(seconds)

TM_OPTION_PMTU_LARGER_TTL The length of time (in seconds)
before another path MTU estimate
increase is tried, after a previous
path MTU estimate increase has
been successful. DEFAULT: 1200
(seconds)

TM_OPTION_TIMER_MAX_EXECUTE The maximum number of timers to
process in a single call to
tfTimerExecute. Default 0, which
means that there is no maximum. To
minimize the latency of the
tfTimerExecute call, set to 1.

TM_OPTION_RIP_SEND_MODE Meaning
TM_RIP_NONE Ignore requests from the TCP/IP

stack to send RIP requests.
TM_RIP_1 Send RIP version 1 packets
TM_RIP_2 Multicast RIP version 2 packets.
TM_RIP_2_BROADCAST Broadcast RIP version 2 packets.

Turbo Treck Real-Time TCP/IP User’s Manual

5.120

TM_OPTION_RIP_RECV_MODE Meaning
TM_RIP_NONE Ignore incoming RIP packets.
TM_RIP_1 Accept RIP version 1 packets.
TM_RIP_2 Accept RIP version 2 packets.
TM_RIP_1|TM_RIP_2 Accept both RIP version 1 and

version 2 packets.
Returns

Value Meaning
0 Success
TM_EINVAL The option or its value is invalid.

Programmer’s Reference

5.121

tfSetTreckOptions

#include <trsocket.h>

int tfSetTreckOptions
(
int optionName,
unsigned long optionValue
);

Function Description
This call is used to set various options that are used by the Turbo Treck TCP/IP
stack.

Note: This function should be called only after having called tfStartTreck.

Parameters
Parameter Description
optionName The option to change (see below).
optionValue The new value to change it to.

Option Name Meaning
TM_OPTION_ARP_MAX_RETRY The maximum number of ARP retries

before going into the ARP quiet
time state. DEFAULT: 6

TM_OPTION_ARP_TIMEOUT_TIME The amount of time in seconds
between ARP retries. DEFAULT: 1

TM_OPTION_ARP_QUIET_ TIME The length of the ARP quiet time
state in seconds. DEFAULT: 20

TM_OPTION_ARP_TTL The length of time that an ARP
entry should be kept in the ARP
cache in seconds. (To disable ARP
aging, set to TM_RT_INF.)
DEFAULT: 600.

TM_OPTION_ARP_MAX_ENTRIES Maximum number of ARP entries in
the ARP cache. Each entry
consumes about 100 bytes. Lower
this value if your heap space is low.
DEFAULT: 64

TM_OPTION_ARP_SMART Boolean to indicate whether the
ARP logic should store all ARP
mappings broadcast on the local
network, even if we were not waiting
for a reply, or if the request was not

Turbo Treck Real-Time TCP/IP User’s Manual

5.122

for us. Set this option value to 0, if
your heap space is low. DEFAULT: 1
(on)

TM_OPTION_ROUTE_MAX_ENTRIES Maximum number of dynamic route
entries in the routing table.
DEFAULT: 10

TM_OPTION_ROUTER_AGE_LIMIT The maximum of time in seconds
that a Router entry is kept.
DEFAULT: 600

TM_OPTION_RIP_ENABLE Boolean to enable/disable the
RIPv2 Listener once it has been
started. DEFAULT: 0. To start RIP,
the user should call tfUseRip
described below.

TM_OPTION_RIP_SEND_MODE The mode used to send RIP packets
(see below). Default:
TM_RIP_2_BROADCAST

TM_OPTION_RIP_RECV_MODE The mode used to receive RIP
packets (see below). DEFAULT:
TM_RIP_1|TM_RIP_2

TM_OPTION_IP_FORWARDING A boolean to enable IP forwarding.
DEFAULT: 0

TM_OPTION_IP_DBCAST_FORWARD A boolean to enable directed
broadcast forwarding DEFAULT: 0

TM_OPTION_IP_FRAGMENT A boolean to enable IP
fragmentation. DEFAULT: 1

TM_OPTION_IP_TTL The initial time-to-live for IP
datagrams. DEFAULT: 64

TM_OPTION_IP_TOS The default Type-Of-Service for IP
datagrams. DEFAULT: 0

TM_OPTION_IP_FRAG _TTL Fragment re-assembly timeout value
in seconds. DEFAULT: 64

TM_OPTION_ICMP_ADDR_MASK_AGENT A boolean to enable/disable
the ICMP address mask agent
DEFAULT: 0

TM_OPTION_UDP_CHECKSUM A boolean to enable/disable UDP
checksums on outgoing packets
DEFAULT: 1

Programmer’s Reference

5.123

TM_OPTION_PMTU_DECREASED_TTL The length of time (in seconds)
before a path MTU estimate
increase is tried, after having
received an ICMP Datagram Too
Big Message error. DEFAULT: 600
(seconds)

TM_OPTION_PMTU_LARGER_TTL The length of time (in seconds)
before another path MTU estimate
increase is tried, after a previous
path MTU estimate increase has
been successful. DEFAULT: 1200
(seconds)

TM_OPTION_SEND_TRAILER_SIZE Number of bytes of extra space to
include at the end of outgoing
packets. This could be used, for
instance, if the user needs space to
copy their own trailer onto outgo-
ing packets. DEFAULT: 0

TM_OPTION_TIMER_MAX_EXECUTE The maximum number of timers to
process in a single call to
tfTimerExecute. Default 0, which
means that there is no maximum. To
minimize the latency of the
tfTimerExecute call, set to 1.

TM_OPTION_RIP_SEND_MODE Meaning
TM_RIP_NONE Ignore requests from the TCP/IP

stack to send RIP requests.
TM_RIP_1 Send RIP version 1 packets
TM_RIP_2 Multicast RIP version 2 packets
TM_RIP_2_BROADCAST Broadcast RIP version 2 packets
TM_OPTION_RIP_RECV_MODE Meaning
TM_RIP_NONE Ignore incoming RIP packets
TM_RIP_1 Accept RIP version 1 packets
TM_RIP_2 Accept RIP version 2 packets
TM_RIP_1|TM_RIP_2 Accept both RIP version 1 and

version 2 packets
Returns
Value Meaning
0 Success
TM_EINVAL The option or its value is invalid.

Turbo Treck Real-Time TCP/IP User’s Manual

5.124

tfStartTreck

#include <trsocket.h>

int tfStartTreck
(
void
);

Function Description
tfStartTreck is used by the user to initialize the Turbo Treck protocol stack. This
involves initializing all the global variables and getting system resources.

Note: The only Turbo Treck call that can be made prior to calling tfStartTreck
is tfInitTreckOptions.

Parameters
None

Returns
Value Meaning
0 Success
TM_ENOBUFS No memory to complete the

operation.
TM_EPERM The timer tick length has not been

initialized. Use the
tfInitTreckOptions call to initialize
it.

TM_EFAULT Code is compiled with the wrong
network byte order switch. If you
had the TM_LITTLE_ENDIAN
switch defined in trsystem.h,
undefine it. If you had not defined
it, define it.

Programmer’s Reference

5.125

Device/Interface API

tfAddInterface

#include <trsocket.h>

TtUserInterface tfAddInterface
(
char * namePtr,
ttUserLinkLayer linkLayerHandle,
ttDevOpenCloseFuncPtr drvOpenFuncPtr,
ttDevOpenCloseFuncPtr drvCloseFuncPtr,
TtDevSendFuncPtr drvSendFuncPtr,
TtDevRecvFuncPtr drvRecvFuncPtr,
ttDevFreeRecvFuncPtr drvFreeRecvBufFuncPtr,
TtDevIoctlFuncPtr drvIoctlFuncPtr,
ttDevGetPhyAddrFuncPtr drvGetPhyAddrFuncPtr,
int * *drvAddErrorPtr
);

Function Description
This function is the main function to use when adding an interface to the Turbo
Treck TCP/IP system. Note: Interfaces are added in the CLOSED state. An example
would be as follows:

myInterfaceHandle=tfAddInterface(
“NE2000.001”,
etherLinkLayerHandle,
ne2kOpen,
ne2kClose,
ne2kSend,
ne2kReceive,
(ttDevFreeRecvFuncPtr)0,
ne2kIoctl,
ne2kGetPhyAddr,
&errorCode);

Turbo Treck Real-Time TCP/IP User’s Manual

5.126

Parameters
Parameter Description
namePtr The callers name for the device

(each call to tfAddInterface must
use a unique name). The name
length cannot exceed
TM_MAX_DEVICE_NAME –1 (13
bytes).

linkLayerHandle The link layer (layer 2) protocol
handle that this interface will use.
This is returned by tfUseEthernet,
tfUseAsyncPpp,
tfUseAsyncServerPPP, or
tfUseSlip.

drvOpenFuncPtr A function pointer to the device
drivers open function.

drvCloseFuncPtr A function pointer to the device
drivers close function.

drvSendFuncPtr A function pointer to the device
driver’s send routine.

drvRecvFuncPtr A function pointer to the device
driver’s recv routine.

drvFreeRecvBufFuncPtr A function pointer a device driver
function that will free a receive
buffer (OPTIONAL).

drvIoctlFuncPtr A function pointer to an IOCTL
routine. This function is called by
tfIoctlInterface.

drvGetPhyAddrFuncPtr A function pointer to the device
driver that will return the physical
address for the device.

drvAddErrorPtr A pointer to an int that will contain
an error (if one occurred).

Programmer’s Reference

5.127

The following table is a list of the prototypes for the device driver functions

int drvOpenFunc(ttUserInterface interfaceHandle);
int drvCloseFunc(ttUserInterface interfaceHandle);
int drvSendFunc(ttUserInterface interfaceHandle,
 char *dataPtr,
 int dataLength,
 int flag);
int drvRecvFunc(

ttUserInterface interfaceHandle,
char TM_FAR **dataPtr,
int TM_FAR *dataLength,
ttUserBufferPtr userBufferHandlePtr

);
int drvFreeRecvFunc(ttUserInterface interfaceHandle,

char *dataPtr)
int drvIoctlFunc(ttUserInterface interfaceHandle,
 int flag,
 void *optionPtr,
 int optionLen); int
drvGetPhysAddrFunc(

ttUserInterface interfaceHandle,
char *physicalAddress);

Returns
An Interface Handle or a NULL handle when an error occurs. If an error occurs,
the error is stored in *drvAddErrorPtr.

ErrorCode Description
TM_EINVAL One of the parameters is invalid
TM_EALREADY Device has already been added.
TM_ENOBUFS Not enough buffers to allocate a

device entry.

Turbo Treck Real-Time TCP/IP User’s Manual

5.128

tfAddInterfaceMhomeAddress

#include <trsocket.h>

int tfAddInterfaceMhomeAddress
(
ttUserInterface interfaceHandle,
ttUserIpAddress ipAddress,
unsigned char multiHomeIndex
);

Function Description
Add a multihome IP address to the interface without adding it to the routing table.
This allows the Turbo Treck stack, for example, to assume the IP address identity of
another host on another network, and therefore to allow a server application on the
Turbo Treck stack to get the packets whose destination is for that other host, and
offload some of the work from that other host server. If the interface uses the
Ethernet link layer, then the user should also add a proxy arp entry for the IP
address it is assuming.

An example would be:

errorCode = tfAddInterfaceMhomeAddress (
myInterfaceHandle,
inet_addr (“208.229.201.61”),
(unsigned char)1);

Parameters
Parameter Description
interfaceId The device entry. This is returned

by tfAddInterface.
ipAddress Extra multihome IP Address.
multiHomeIndex The index for this IP address for

multihoming. Because we are
adding an additional IP address
without really configuring the
interface, the interface should
already have been configured, and
this multihomeIndex should be
bigger than 0.

Programmer’s Reference

5.129

Returns
Value Meaning
0 Success
TM_EADDRNOTAVAIL Attempt to configure the device

with a broadcast address.
TM_ENOBUFS Not enough memory to complete

operation
TM_EINVAL Bad parameter, i.e bad interface

handle, or multi home index out of
boundaries (not between 0, and
TM_MAX_IPS_PER_IF)

TM_EALREADY The interface has already been
configured at this mult-home index.

Turbo Treck Real-Time TCP/IP User’s Manual

5.130

tfCheckReceiveInterface

#include <trsocket.h>

int tfCheckReceiveInterface
(
ttUserInterface interfaceHandle
);

Function Description
This function is used to check if the data is waiting to be received on a particular
device/interface. This call can be used in environments where it is preferable to poll
the device for received data (i.e. a main loop). If you are using a separate task or
thread to receive data, then you should use the tfWaitReceiveInterface call. The
call is used is used in conjunction with tfNotifyInterfaceIsr and tfRecvInterface to
poll the device driver for received data. Upon a successful return, the user should
call tfRecvInterface to send the data from the device driver to the protocol stack.

Note: There must be a one to one correspondence from the number of received
packets parameter in tfNotifyInterfaceIsr to the number of tfRecvInterface
calls.

Parameters
Parameter Description
interfaceHandle The interface handle to poll to see if

data needs to be received from the
device driver

Returns
Value Meaning
0 There is data waiting in the device

driver to be received (the driver has
called tfNotifyInterfaceIsr).

TM_EWOULDBLOCK There is no data waiting to be
received from the device driver.

Programmer’s Reference

5.131

tfCheckSentInterface

#include <trsocket.h>

int tfCheckSentInterface
(
ttUserInterface interfaceHandle
);

Function Description
This function is used in conjunction with tfNotifyInterfaceIsr and
tfSendCompleteInterface, to poll the device driver to see if the packet sent to the
device driver has been sent. This function will return 0, when the accumulated
numberBytesSent notified by tfNotifyInterfaceIsr has reached
TM_NOTIFY_SEND_LOW_WATER (2048 by default). When
tfCheckSentInterface returns 0, the caller should then call tfSendCompleteInterface
to allow the stack to free the zero copy buffers used by the protocol stack. This call
is used when the user does not have a separate send complete task or thread.

Parameters
Parameter Description
interfaceHandle The interface handle to check to see

if data has been sent.
Returns

Value Meaning
0 Send Complete has occurred (the

driver has called
tfNotifyInterfaceIsr from the send
complete interrupt service routine,
and the
TM_NOTIFY_SEND_LOW_WATER
 mark has been reached).

TM_EWOULDBLOCK No data has been sent yet, or
threshold has not been reached.

Turbo Treck Real-Time TCP/IP User’s Manual

5.132

tfCheckXmitInterface

#include <trsocket.h>

int tfCheckXmitInterface
(
ttUserInterface interfaceHandle
);

Function Description
TfCheckXmitInterface is used to check if data is ready to be sent on a particular
device/interface (data queued to the interface send queue). This call can be used in
environments where it is preferable to poll the device for data ready to be transmitted
(i.e. a main loop). If you are using a separate task or thread to transmit data, then
you should use the tfWaitXmitInterface call. Upon a successful return, the user
should call tfXmitInterface to send the data ready to be transmitted from the bottom
of the Turbo Treck stack to the device driver.

Parameters
Parameter Description
interfaceHandle The interface handle to poll to see if

data needs to be received from the
device driver

Returns
Value Meaning
0 There is data waiting to be

transmitted to the device driver.
TM_EWOULDBLOCK There is no data waiting to be

transmitted to the device driver.

Programmer’s Reference

5.133

tfCloseInterface

#include <trsocket.h>

int tfCloseInterface
(
ttUserInterface interfaceId
);

Function Description
This function is used to close the interface that is passed in. It simply calls the link
layer close routine, the driver close routine, removes the interface from the local
routing table and returns the error code that the link layer, or driver returns.

Parameters
Parameter Description
interfaceId The device driver entry that

contains the close routine
Returns
Value Meaning
0 Success
TM_EINVAL Parameter is invalid
TM_EALREADY The device is already closed
TM_EINPROGRESS If the connection is in the process

of closing the connection (as in
PPP). The user doesn’t need to do
anything, and will be notified by the
PPP link layer when the interface is
actually closed.

Turbo Treck Real-Time TCP/IP User’s Manual

5.134

tfConfigInterface

#include <trsocket.h>

int tfConfigInterface
(
ttUserInterface interfaceHandle,
ttUserIpAddress ipAddress,
ttUserIpAddress netMask,
int flag,
int buffersPerFrameCount,
unsigned char multiHomeIndex
);

Function Description
This function is used to configure an interface with an IP address, and net mask
(either supernet or subnet). Can be used for Multiple IP Addresses on an Interface
(Multihoming). It must be called before the interface can be used.

An example would be:

errorCode = tfConfigInterface (
myInterfaceHandle,
inet_addr (“208.229.201.65”),
inet_addr (“255.255.255.0”),
0,
1,
(unsigned char)0);

Note: tfConfigInterface is deprecated for the first multihome. Please use
tfOpenInterface for the first multihome configuration, instead of
tfConfigInterface.

Programmer’s Reference

5.135

DHCP or BOOTP configuration.

tfConfigInterface with a TM_DEV_IP_DHCP (respectively
TM_DEV_IP_BOOTP) flag will send a DHCP (respectively BOOTP) request to a
DHCP/BOOTP server, and will return with a TM_EINPROGRESS errorCode.

Note that tfUseDhcp (respectively tfUseBootp) needs to have been called prior to
calling tfConfigInterface, otherwise the call will fail with error code TM_EPERM.

An example of a configuration using the DHCP protocol would be:
errorCode = tfConfigInterface (

myInterfaceHandle,
(ttUserIpAddress)0,
(ttUserIpAddress)0,
TM_DEV_IP_DHCP,
1,
(unsigned char)0);

Checking on completion of DHCP or BOOTP configuration.

• Synchronous check: The user can make multiple calls to
tfConfigInterface to determine when the configuration has
completed.. Additional calls to tfConfigInterface will return
TM_EALREADY as long as the BOOTP/DHCP server has not
replied. tfConfigInterface will return TM_ENOERROR, if the
BOOTP/DHCP server has replied and the configuration has
completed.

• Asynchronous check: To avoid this synchronous poll, the user
can provide a user call back function to tfUseDhcp (respectively
tfUseBootp), that will be called upon completion of
tfConfigInterface. See tfUseDhcp (respectively tfUseBootp) for
details.

Parameters
Parameter Description
interfaceId The device entry. This is returned

by tfAddInterface.
ipAddress The IP Address for this Interface.
netMask The net mask for this device

(Subnet or Supernet)
flag Special flags for this deviceOred

together (see below).
buffersPerFrameCount Number of scattered buffers

allowed for each frame being sent
out. If scattered buffers are not

Turbo Treck Real-Time TCP/IP User’s Manual

5.136

allowed by the driver, this number
should be one, otherwise it should
be bigger than one.

multiHomeIndex The index for this IP address for
multihoming. Zero must be the first
multi home index used.

Flags
Value Meaning
TM_DEV_SCATTER_SEND_ENB This device supports sending data

in multiple buffers per frame.
If this flag is set, then the
buffersPerFrameCount should be
bigger than 1. This flag should
always be set for SLIP or PPP serial
devices.

TM_DEV_MCAST_ENB This device supports multicast
addresses

TM_DEV_IP_FORW_ENB Allow IP Forwarding to and from
this device

TM_DEV_IP_FORW_DBROAD_ENB Allow forwarding of IP directed
broadcasts to and from this device

TM_DEV_IP_FORW_MCAST_ENB Allow forwarding of IP multicast
messages to and from this device

TM_DEV_IP_BOOTP Configure IP address using BOOTP
client protocol. tfUseBootp need to
have been called first.

TM_DEV_IP_DHCP Configure IP address using DHCP
client protocol. tfUseDhcp need to
have been called first.

TM_DEV_IP_USER_BOOT Allow the user to temporarily
configure the interface with a zero
IP address, to allow the user to use
a proprietary protocol to retrieve an
IP address from the network.

TM_DEV_IP_NO_CHECK Allow the Turbo Treck stack to
function in promiscuous mode,
where all packets received by this
interface whill be handed to the
application without checking for an
IP address match on the incoming
interface.

Programmer’s Reference

5.137

Returns
Value Meaning
0 Success
TM_EADDRNOTAVAIL Attempt to configure the device with a

broadcast address.
TM_EINPROGRESS tfConfigInterface call has not

completed. This error will be returned for
a DHCP or BOOTP configuration for
example.

TM_ENOBUFS Not enough memory to complete
operation

TM_EINVAL Bad parameter, or first configuration
should be for multihome index 0. Note
that a zero IP address is allowed for
Ethernet if the BOOTP, DHCP, or
USER_BOOT flag is on, or for PPP,
otherwise a TM_EINVAL errorCode is
returned.

TM_EALREADY A previous call to tfConfigInterface has
not yet completed.

TM_EPERM User attempted to configure an IP
address via DHCP (respectively
BOOTP) without having called
tfUseDhcp (respectively tfUseBootp)
successfully first.

TM_EMFILE Not enough sockets to open the BOOTP
client UDP socket (TM_IPDEV_BOOTP
or TM_IP_DEV_DHCP configurations
only.)

TM_ADDRINUSE Another socket is already bound to the
BOOTP client UDP port.
(TM_IP_DEV_BOOTP or
TM_IP_DEV_DHCP configurations
only.)

TM_ETIMEDOUT DHCP or BOOTP request timed out
TM_EAGAIN A PPP session is currently closing. Call

tfConfigInterface again after receving
notification that the previous session
has ended.

other Error value as returned by the device
driver open function.

Turbo Treck Real-Time TCP/IP User’s Manual

5.138

tfDeviceClearPointer

#include <trsocket.h>

void * tfDeviceClearPointer
(
ttUserInterface interfaceHandle
);

Function Description
tfDeviceClearPointer will clear the association created by tfDeviceStorePointer
between the interface handle, and the device specific structure allocated in the
device driver open function.

Call tfDeviceClearPointer from the driver close function, and then, if the pointer
returned by tfDeviceClearPointer is non null, free it.

Parameters
Parameter Description
interfaceHandle Interface Id as returned by

tfAddInterface.
Returns

Value Meaning
Non zero pointer Success. Pointer to the device

driver pointer.
(ttVoidPtr)0 No associated device driver pointer

on this interface

Note :See also tfDeviceGetPointer, tfDeviceStorePointer

Programmer’s Reference

5.139

tfDeviceGetPointer

#include <trsocket.h>

void * tfDeviceGetPointer
(
ttUserInterface interfaceHandle
);

Function Description
Call tfDeviceGetPointer in any device driver function, to retrieve the pointer to
the device specific structure allocated, and stored (with the tfDeviceStorePointer
API) in the device driver open function

tm_device_get_pointer()
This macro has the same functionality as tfDeviceGetPointer. It allows the user
to avoid a function call in order to get the device driver pointer. In that case the
following header files need to be included:

#include <trsocket.h>
#include <trmacro.h>
#include <trtype.h>
#include <trproto.h>
#include <trglobal.h>

Parameters
Parameter Description
interfaceHandle Interface Id as returned by

tfAddInterface.
Returns

Value Meaning
Non zero pointer Success
(void *)0 No pointer was stored on the

interface

Note: See also tfDeviceClearPointer, tfDeviceStorePointer

Turbo Treck Real-Time TCP/IP User’s Manual

5.140

tfDeviceStorePointer

#include <trsocket.h>

int tfDeviceStorePointer
(
ttUserInterface interfaceHandle,
void * deviceDriverPtr
);

Function Description
In the device driver open function, after having allocated a device driver specific
structure, call tfDeviceStorePointer to store a pointer to that structure on the
interface.

Parameters
Parameter Description
interfaceHandle Interface Id as returned by

tfAddInterface.
deviceDriverPtr Device Driver Pointer to be stored

on the interface

Returns
Value Meaning
TM_ENOERROR Success
TM_EALREADY A device driver pointer was already

stored on that interface
TM_EINVAL Invalid interface handle

Note: See also tfDeviceClearPointer, tfDeviceGetPointer

Programmer’s Reference

5.141

tfFinishOpenInterface

include <trsocket.h>

int tfFinishOpenInterface
(
ttUserInterface interfaceHandle,
ttUserIpAddress ipAddress,
ttUserIpAddress netMask,
);

Function description.
Finish opening an Interface that the user had started to open with the
TM_DEV_IP_USER_BOOT flag. That flag caused the Turbo Treck stack not to
store the IP address/netmask in the routing table, leaving the interface in a half
configured state. tfFinishOpenInterface will attempt to insert the ipaddress/netmask
into the routing table.

Parameters
Parameter Description
interfaceId The device entry. This is returned

by tfAddInterface.
ipAddress The IP Address for this Interface at

multihome index 0.
netMask The net mask for this device

(Subnet or Supernet) at multihome
index 0.

Returns

Value Meaning
0 Success
TM_EADDRNOTAVAIL Attempt to configure the device

with a broadcast address.
TM_ENOBUFS Not enough memory to complete

operation
TM_EINVAL Bad parameter, such as invalid

interfaceId.
TM_EALREADY ipAddress/netMask already in the

routing table.
TM_EPERM User did not set the

TM_DEV_IP_USER_BOOT flag
when calling tfOpenInterface.

Turbo Treck Real-Time TCP/IP User’s Manual

5.142

tfFreeDriverBuffer

#include <trsocket.h>

int tfFreeDriverBuffer
(
ttUserBuffer userBuffer,
);

Function Description
User frees a buffer that was allocated with either tfGetEthernetBuffer(), or
tfGetDriverBuffer(), and that was not given to the Turbo Treck stack.

 Note: If the buffer has been given to the Turbo Treck stack, the user no longer
owns the buffer, and should not call tfFreeDriverBuffer.

Parameters
Parameter Description
userBuffer A user buffer handle as stored by

tfGetEthernetBuffer or tfGetDriverBuffer.
Returns

Value Meaning
0 Success
TM_DEV_ERROR Null user buffer handle, or user does not own

the buffer.

Programmer’s Reference

5.143

tfGetDriverBuffer

#include <trsocket.h>

char * tfGetDriverBuffer
(
ttUserBufferPtr userBufferPtr,
int length,
int alignment
);

Function Description
This function is used to get a buffer from the Turbo Treck buffer pool for the user
to use for a device driver. It is not required for a user to use the Turbo Treck buffer
pool (i.e. this function) because some devices may not support it.

Parameters

Parameter Description
userBufferPtr A pointer to a ttUserBuffer variable

that the user buffer handle is stored
into

length Number of bytes to be allocated by
the system

alignment The returned buffer pointer will be
aligned on a multiple of this value.

Returns
A char * to the beginning of the data area to store the received data into or a
NULL pointer if there is no memory to complete the operation

Turbo Treck Real-Time TCP/IP User’s Manual

5.144

tfGetBroadcastAddress

int tfGetBroadcastAddress
(
ttUserInterface interfaceHandle,
ttUserIpAddress* ifBroadcastAddressPtr,
unsigned char multiHomeIndex
);

Function Description
This function is used to retrieve the broadcast address for an interface. The multi
home index is used for interfaces that have more than one IP address. If the interface
has only one IP address, then the Multi home index should be set to zero. The
broadcast address is automatically calculated from the IP address and Netmask
combination

Parameters
Parameter Description
interfaceHandle The device driver entry that we

wish to get the broadcast address
on.

ifBroadcastAddressPtr The pointer to the area that the
function will store the broadcast
address into.

multiHomeIndex An index for multiple IPs.

Returns
Value Meaning
0 Success
TM_EINVAL Bad parameter.
TM_ENETDOWN Interface/multi home index is not

configured.

Programmer’s Reference

5.145

tfGetIfMtu

int tfGetIfMtu
(
ttUserInterface interfaceHandle,
int * ifMtuPtr
);

Function Description
This function is used to retrieve the Maximum Transmission Unit (MTU) for a
device.

Parameters

Parameter Description
interfaceHandle The device driver entry that we

wish to get the physical address on.
ifMtuPtr Pointer to the integer that will

contain the Maximum Transmission
Unit for a device

Returns
Value Meaning
0 Success
TM_EINVAL One of the parameters is null or 0.

Turbo Treck Real-Time TCP/IP User’s Manual

5.146

tfGetIpAddress

int tfGetIpAddress
(
ttUserInterface interfaceHandle,
ttUserIpAddress * ifIpAddressPtr,
unsigned char mutiHomeIndex
);
Function Description
This function is used to get the IP address of an interface. The multi home index is
used for interfaces that have more than one IP address. If the interface has only one
IP address then the Multi home index should be set to zero.

Parameters
Parameter Description
interfaceHandle The device driver entry that we

wish to get the physical address on.

ifIpAddressPtr A pointer to the location where to
store the IP address for the
interface

mutiHomeIndex An index for multiple IPs

Returns
Value Meaning
0 Success
TM_EINVAL Bad parameter.
TM_ ENETDOWN Interface/multi home index is not

configured.

Programmer’s Reference

5.147

tfGetNetMask

int tfGetNetMask
(
ttUserInterface interfaceHandle,
ttUserIpAddress * netMaskPtr,
unsigned char mutiHomeIndex
);

Function Description
This function is used to get the Net Mask from a given interface. The multi home
index is used for interfaces that have more than one IP address. If the interface has
only one IP address then the Multi home index should be set to zero.

Parameters
Parameter Description
interfaceHandle The device driver entry that we

wish to get the net mask for
netMaskPtr A pointer to a location where to

store the Net Mask upon function
completion.

mutiHomeIndex An index for multiple IP’s per device

Returns
Value Meaning
0 Success
TM_EINVAL Bad parameter
TM_ENETDOWN Interface/multi home index is not

configured.

Turbo Treck Real-Time TCP/IP User’s Manual

5.148

tfInterfaceGetVirtualChannel

int tfInterfaceGetVirtualChannel
(
ttUserInterface interfaceHandle,
ttUser32Bit * virtualChannelPtr
);

Function Description
tfInterfaceGetVirtualChannel is called by the user, in the send path, from the
driver send routine, to get the ATM virtual channel associated with the interface
and multi home the data is sent from.

Note: this function should only be called from the device driver send function.

Parameters
Parameter Description
interfaceHandle The interface handle as returned by

tfAddInterface, and passed to the
device driver send function.

virtualChannelPtr Pointer to a 32-bit variable where
the virtual channel will be stored, if
the call is successful.

Returns
Value Meaning
TM_ENOERROR Success
TM_EINVAL Invalid interface handle, or interface

handle does not match the interface
handle of the packet currently being
sent.

TM_ENOENT Empty device send queue

Note: Also see tfInterfaceSetVirtualChannel.

Programmer’s Reference

5.149

tfInterfaceSetOptions

#include <trsocket.h>

int tfInterfaceSetOptions
(
ttUserInterface interfaceHandle,
int optionName,
void TM_FAR * optionValuePtr,
int optionLength
);

Function Description
Configure interface options. optionValuePtr points to a variable of type as described
below. OptionLenth contains the size of that variable.

Options
TM_DEV_OPTIONS_RECV_COPY Make the Turbo Treck stack (inside

the tfRecvInterface function) copy
received driver buffers whose sizes
are smaller than the value pointed
to by optionValuePtr into a newly
allocated buffer. Option is disal-
lowed on a point to point (i.e SLIP,
or PPP) interface since the SLIP, and
PPP link layer copy the data into a
newly allocated buffer.
Data Type: unsigned short

TM_DEV_OPTIONS_SCAT_RECV_LENGTH Valid only if
TM_USE_DRV_SCAT_RECV is
defined. Set the minimum number of
bytes at the head of a packet that
have to be contiguous. If a scat-
tered recv buffer is received from
the driver with a first link length
below that minimum, that minimum
number of bytes (but no more than
the total length of the buffer) is
copied into a new stack allocated
buffer. Default value is
TM_DEV_DEF_RECV_CONT_HDR_LENGTH.

Turbo Treck Real-Time TCP/IP User’s Manual

5.150

TM_DEV_OPTIONS_XMIT_TASK Turn on/off usage of a transmit
task. Default is off. Option can only
be used when device/interface is
not opened/configured. Cannot
turn on this option, if the device/
interface transmit queue is used.
Data Type unsigned short

TM_DEV_OPTIONS_BOOT_TIMEOUT Base number of seconds for a
BOOTP/DHCP request timeout.
BOOTP/DHCP timeouts increase
with each retransmission, so if this
value is set to two seconds, the first
timeout will be two seconds, the
second will be four seconds, the
third will be eight seconds, etc.
Default: 4 seconds
Data Type unsigned char

TM_DEV_OPTIONS_BOOT_RETRIES Total number of BOOTP/DHCP
requests to send without receiving
a response from a BOOTP/DHCP
server.
Default: 6.
Data Type unsigned char

Programmer’s Reference

5.151

Example on how to turn the usage of a transmit task on:

unsigned short optionValue;

optionValue = 1; /* turn option on */
errorCode = tfInterfaceSetOptions(myInterfaceHandle,
 TM_DEV_OPTIONS_XMIT_TASK,
 &optionValue,
 sizeof(unsigned short));

Parameters
Parameter Description
interfaceHandle Interface handle of the SLIP

interface we want to set the option
on.

optionName The option to set. See above.
optionValuePtr The pointer to a user variable into

which the option value is set. User
variable is of data type described
above.

optionLength size of the user variable, which is
the size of the option data type.

Returns
Value Meaning
0 Success
TM_EINVAL Invalid optionName, or invalid

option length for option, or invalid
option value for option.

TM_EPERM TM_DEV_OPTIONS_RECV_COPY:
Interface/device is a point to point
interface.TM_DEV_OPTIONS_XMIT_TASK:
Interface/device already
configured/opened,or device/
interface transmit queue is used.

Turbo Treck Real-Time TCP/IP User’s Manual

5.152

tfInterfaceSetVirtualChannel

#include <trsocket.h>

int tfInterfaceSetVirtualChannel
(
ttUserInterface interfaceHandle,
ttUser32Bit virtualChannel,
int mhomeIndex
);

Function Description
tfInterfaceSetVirtualChannel allows the user to set an ATM virtual channel for
a given multi home on an interface.

Parameters
Parameter Description
interfaceHandle The interface handle as returned by

tfAddInterface
virtualChannel ATM virtual channel set by the

user.
mhomeIndex Multi home index on the interface.

Returns
Value Meaning
TM_ENOERROR Success
TM_EINVAL Invalid interface handle, or multi

home index.
Note: also see tfInterfaceGetVirtualChannel

Programmer’s Reference

5.153

tfInterfaceSpinLock

#include <trsocket.h>

int tfInterfaceSpinLock
(
ttUserInterface interfaceHandle
);

Function Description
tfInterfaceSpinLock is called from the device driver send routine to yield the CPU
to allow spin lock while waiting for room to transmit the data. This function will
yield the CPU, only if the user is using a transmit task to interface between the
Turbo Treck stack and the device driver.

Parameters
Parameter Description
interfaceHandle The Interface Handle of the device

we are waiting to be ready.

Returns
Value Meaning
0 Success
TM_EPERM Function did not yield the CPU,

because the user is not using a
transmit task (i.e. did not call
tfInterfaceSetOptions to turn on the
transmit task option.)

Turbo Treck Real-Time TCP/IP User’s Manual

5.154

tfIoctlInterface

#include <trsocket.h>

void tfIoctlInterface
(
ttUserInterface interfaceHandle,
int flag,
void * optionPtr,
int optionLen
);

Function Description
The function allows the user to call the driver special functions. An example of a
special function would be to perform driver maintenance or refill a receive pool.
This function is provided to allow the user to call the driver and be guaranteed that
no other tasks are using the driver at the same time. The flag parameter if below
0x100 is driver specific and has no meaning to the TCP/IP stack.

Empty the transmit ring of buffers:

This function should also be called if the user uses the Turbo Treck device/interface
transmit queue. In this case, the user needs to periodically call tfIoctlInterface to
empty the device driver transmit queue as follows:
errorCode =
tfIoctlInterface(interfaceHandle, TM_DEV_IOCTL_EMPTY_XMIT_FLAG,
 (void *)0, 0);

In this case, the device driver ioctl function will not be called. The Turbo Treck
stack will internally attempt to empty the device Turbo Treck device/interface
transmit queue.

Refill the Turbo Treck ISR recv pool:

 If the user need to get a Turbo Treck buffer from the receive ISR, and uses the
Turbo Treck pre-allocated recv pool of buffers, then the user needs to periodically
call tfIoctlInterface to replenish the Turbo Treck ISR recv pool as follows:
errorCode =
tfIoctlInterface(interfaceHandle, TM_DEV_IOCTL_REFILL_POOL _FLAG,
 (void *)0, 0);

In this case, the device driver ioctl function will not be called. The pool refill will be
done internally by the Turbo Treck stack

Programmer’s Reference

5.155

Parameters

Parameter Description
interfaceHandle The interface handle of the driver’s

ioctl routine to call
flag See below.
optionPtr Pointer to a tfIoctlInterface specific

parameter.
optionLen length of the option.

The flags parameter is formed by ORing one or more of the following:

Between 0x0 and 0x100 Device specific flag.

Returns
Value Meaning
0 Success
TM_EINPROGRESS TM_DEV_IOCTL_XMIT_FLAG:

Some buffers (but not all) have been
transmitted.

TM_DEV_IOCTL_REFILL_FLAG Some buffers (but not all) have been
allocated

TM_EPERM TM_DEV_IOCTL_XMIT_FLAG:
transmit queue is not enabled.

TM_DEV_IOCTL_REFILL_FLAG User did not create a Turbo Treck ISR
recv pool.

TM_ENOBUFS TM_DEV_IOCTL_REFILL_FLAG: No
buffer could be allocated.

other Driver specific error code.
TM_DEV_IOCTL_XMIT_FLAG Buffers are still queued in the

interface/device send queue. None
was sent.

Turbo Treck Real-Time TCP/IP User’s Manual

5.156

tfNotifyInterfaceIsr
#include <trsocket.h>

void tfNotifyInterfaceIsr
(
ttUserInterface interfaceHandle,
int numberRecvPackets,
int numberSendCompletePackets,
unsigned long numberBytesSent,
unsigned long flag
);

Function Description
This function notifies the stack with both the number of packets received in an
ISR and the number of packets transmitted by the chip since the last ISR. This
function is to be called by the user inside an ISR, with the appropriate number of
received and sent packets. This will in turn cause the stack to notify the user’s
application about what has occurred. In the case of received packets,
tfCheckReceiveInterface will return 0 once for each received packets if the user
is in polling mode.

In blocking mode, tfWaitReceiveInterface will return once for each received
packet. For sent packets, tfCheckSentInterface will return 0 once for each sent
packet in polling mode, or tfWaitSentInterface will return once for each sent
packet in blocking mode. These functions only notify the user of a sent packet in
the case that the accumulated numberBytesSent has reached
TM_NOTIFY_SEND_LOW_WATER (2048 by default), since the previous
notification.

Parameters

Parameter Description
interfaceHandle The interface handle to notify

Turbo Treck of.
numberRecvPackets The number of received packets to

notify of.
numberSendCompletePackets The number of packets actually

sent on this interface.
numberBytesSent The number bytes actually sent on

this interface.
flag Unused

Note: The values for numberRecvPackets,numberSendCompletePackets, and
numberBytesSent may be 0.

Programmer’s Reference

5.157

Returns
None

Note: This function should be called only once per Isr. tfNotifyInterfaceIsr
replaces both tfNotifyReceiveInterfaceIsr and tfNotifySentInterfaceIsr.

Turbo Treck Real-Time TCP/IP User’s Manual

5.158

tfNotifyInterfaceTask
#include <trsocket.h>

void tfNotifyInterfaceTask
(
ttUserInterface interfaceHandle,
int numberRecvPackets,
int numberSendCompletePackets,
unsigned long numberBytesSent,
unsigned long flag
);

Function Description
This function notifies the stack with both the number of packets received and the
number of packets transmitted by the chip. This function is to be called by the
user inside a Task (rather than an ISR) with the appropriate number of received
and sent packets. This will in turn cause the stack to notify the user’s application
about what has occurred. In the case of received packets,
tfCheckReceiveInterface will return 0 once for each received packets if the user
is in polling mode. In blocking mode, tfWaitReceiveInterface will return once for
each received packet. For sent packets, tfCheckSentInterface will return 0 once
for each sent packet in polling mode, or tfWaitSentInterface will return once for
each sent packet in blocking mode. These functions only notify the user of a
sent packet in the case that the accumulated numberBytesSent has reached
TM_NOTIFY_SEND_LOW_WATER (2048 by default), since the previous
notification.

Parameters

Parameter Description
interfaceHandle the interface handle to notify Turbo

Treck of.
numberRecvPackets The number of received packets to

notify of.
numberSendCompletePackets The number of packets actually

sent on this interface.
numberBytesSent The number bytes actually sent on

this interface.
flag Unused

Note: The values for numberRecvPackets,numberSendCompletePackets, and
numberBytesSent may be 0.

Returns
None

Programmer’s Reference

5.159

tfNotifyReceiveInterfaceIsr

Note: tfNotifyReceiveInterfaceIsr has been deprecated.Please use
tfNotifyInterfaceIsr. tfNotifyReceiveInterfaceIsr will still function in your code.

tfNotifySentInterfaceIsr

Note: tfNotifySentInterfaceIsr has been deprecated. Please use
tfNotifyInterfaceIsr. tfNotifySentInterfaceISr will still function in your code.

tfOpenInterface

#include <trsocket.h>

int tfOpenInterface
(
ttUserInterface interfaceHandle,
ttUserIpAddress ipAddress,
ttUserIpAddress netMask,
int flag,
int buffersPerFrameCount
);

Function Description
This function is used to configure an interface with an IP address, and net mask
(either supernet or subnet). It must be called before the interface can be used.

An example would be:

errorCode = tfOpenInterface (
myInterfaceHandle,
inet_addr (“208.229.201.65”),
inet_addr (“255.255.255.0”),
0,
1);

Note: tfConfigInterface is deprecated for the first multihome. Please use
tfOpenInterface for the first configuration on an interface.

Turbo Treck Real-Time TCP/IP User’s Manual

5.160

DHCP or BOOTP configuration.

tfOpenInterface with a TM_DEV_IP_DHCP (respectively TM_DEV_IP_BOOTP)
flag will send a DHCP (respectively BOOTP) request to a DHCP/BOOTP server,
and will return with a TM_EINPROGRESS errorCode.

Note that tfUseDhcp (respectively tfUseBootp) needs to have been called prior to
calling tfOpenInterface, otherwise the call will fail with error code TM_EPERM.

An example of a configuration using the DHCP protocol would be:

errorCode = tfOpenInterface (
myInterfaceHandle,
(ttUserIpAddress)0,
(ttUserIpAddress)0,
TM_DEV_IP_DHCP,
1);

Checking on completion of DHCP or BOOTP configuration.

• Synchronous check: The user can make multiple calls to
tfOpenInterface to determine when the configuration has
completed.. Additional calls to tfOpenInterface will return
TM_EALREADY as long as the BOOTP/DHCP server has not
replied. tfOpenInterface will return TM_ENOERROR, if the
BOOTP/DHCP server has replied and the configuration has
completed.

• Asynchronous check: To avoid this synchronous poll, the user
can provide a user call back function to tfUseDhcp (respectively
tfUseBootp), which will be called upon completion of
tfOpenInterface. See tfUseDhcp (respectively tfUseBootp) for
details.

Programmer’s Reference

5.161

Parameters
Parameter Description
interfaceId The device entry. This is returned

by tfAddInterface.
ipAddress The IP Address for this Interface.
netMask The net mask for this device

(Subnet or Supernet)
flag Special flags for this deviceOred

together (see below).
buffersPerFrameCount Number of scattered buffers

allowed for each frame being sent
out. If scattered buffers are not
allowed by the driver, this number
should be one, otherwise it should
be bigger than one.

Flags
Value Meaning
TM_DEV_SCATTER_SEND_ENB This device supports sending

data in multiple buffers per frame.
If this flag is set, then the
buffersPerFrameCount should be
bigger than 1. This flag should
always be set for SLIP or PPP
serial devices.

TM_DEV_MCAST_ENB This device supports multicast
addresses

TM_DEV_IP_FORW_ENB Allow IP Forwarding to and from
this device

TM_DEV_IP_FORW_DBROAD_ENB Allow forwarding of IP directed
broadcasts to and from this
device

TM_DEV_IP_FORW_MCAST_ENB Allow forwarding of IP multicast
messages to and from this device

TM_DEV_IP_BOOTP Configure IP address using
BOOTP client protocol.
tfUseBootp need to have been
called first.

TM_DEV_IP_DHCP Configure IP address using
DHCP client protocol. tfUseDhcp
need to have been called first.

Turbo Treck Real-Time TCP/IP User’s Manual

5.162

TM_DEV_IP_USER_BOOT Allow the user to temporarily
configure the interface with a zero
IP address, to allow the user to
use a proprietary protocol to
retrieve an IP address from the
network.

TM_DEV_IP_NO_CHECK Allow the Turbo Treck stack to
function in promiscuous mode,
where all packets received by this
interface will be handed to the
application without checking for
an IP address match on the
incoming interface.

Returns

Value Meaning
0 Success
TM_EADDRNOTAVAIL Attempt to configure the device

with a broadcast address.
TM_EINPROGRESS tfOpenInterface call has not

completed. This error will be
returned for a DHCP or BOOTP
configuration for example.

TM_ENOBUFS Not enough memory to complete
operation

TM_EINVAL Bad parameter. Note that a zero IP
address is allowed for Ethernet if
the BOOTP or DHCP flag is on, or
for PPP, otherwise a TM_EINVAL
errorCode is returned.
TM_EALREADY A previous call to
tfOpenInterface has not yet
completed.

TM_EPERM User attempted to configure an IP
address via DHCP (respectively
BOOTP) without having called
tfUseDhcp (respectively
tfUseBootp) successfully first.

TM_EMFILE Not enough sockets to open the
BOOTP client UDP socket
(TM_IPDEV_BOOTP or
TM_IP_DEV_DHCP configurations
only.)

Programmer’s Reference

5.163

TM_ADDRINUSE Another socket is already bound
to the BOOTP client UDP port.
(TM_IP_DEV_BOOTP or
TM_IP_DEV_DHCP configurations
only.)

TM_ETIMEDOUT DHCP or BOOTP request timed out
TM_EAGAIN A PPP session is currently closing.

Call tfOpenInterface again after
receving notification that the
previous session has ended.

Other Error value as returned by the
device driver open function.

Turbo Treck Real-Time TCP/IP User’s Manual

5.164

tfPoolCreate
#include <trsocket.h>

int tfPoolCreate
(
ttUserInterface interfaceHandle,
int numberFullSizeBuffers,
int numberSmallSizeBuffers,
int fullBufferSize,
int smallBufferSize,
int alignment,
int flag
);

Function Description
 Allocate a ring of pre-allocated device driver receive buffers, so that the device
driver can get a pre-allocated buffer from this recv pool during an ISR. The user can
specify a number of maximum size packets, and a number of small size packets. For
Ethernet device driver the maxim size packet (fullBufferSize parameter) should be
TM_ETHER_MAX_PACKET_CRC. This function should be called from the device
driver open function, and the device driver should only get a buffer from this pool
during an ISR.

Note: The user must periodically replenish the Turbo Treck ISR recv pool as
follows: errorCode =tfIoctlInterface(interfaceHandle,
TM_DEV_IOCTL_REFILL_POOL _FLAG, (void *)0, 0);

Parameters
Parameter Description
interfaceHandle Interface handle as given in the first

parameter of the driver open function,
or as returned by tfAddInterface.

numberFullSizeBuffers Number of full size buffers to pre-
allocate in the ring.

numberSmallSizeBuffers Number of small size buffers to
pre-allocate in the ring.

fullBufferSize Maximum buffer size
(TM_ETHER_MAX_PACKET_CRC
for Ethernet).

smallBufferSize Small buffer size (for example 128
bytes).

alignment Specify data pointer alignment for pre-
allocated receive buffers.

Programmer’s Reference

5.165

flag Indicates whether buffers should be
re-allocated in line when the
tfPoolReceive function is called (in
the context of the recv task).
0 means no in-line reallocation.
TM_POOL_REFILL_IN_LINE
means in-line reallocation.

Returns
Value Meaning
TM_EINVAL numberFullSizeBuffers parameter is

less or equal to zero, or
fullBufferSize parameter is less or
equal to zero, or fullBufferSize is
less than
TM_ETHER_MAX_PACKET_CRC
on Ethernet, or
numberSmallSizeBuffers is negative,
or smallBufferSize is negative, or
smallBufferSize is zero and
numberSmallSizeBuffers is not zero,
or alignment is negative, or
alignment is bigger than 64, or flag
is neither 0, nor
TM_POOL_REFILL_IN_LINE

TM_EPERM Function not called from driver
device open

TM_EALREADY Pool already created on that
interface

TM_ENOBUFS Not enough memory to allocate the
recv pool

Turbo Treck Real-Time TCP/IP User’s Manual

5.166

tfPoolDelete
#include <trsocket.h>

int tfPoolDelete
(
ttUserInterface interfaceHandle
);

Function Description
Free the pool of pre-allocated recv buffers, which was allocated in fPoolCreate.
Should be called by the user from the device driver close function.

Parameters
Parameter Description
interfaceHandle Interface handle as given in the first

parameter of the driver close
function, or as returned by
tfAddInterface.

Returns
Value Meaning
TM_EALREADY Pool already deleted, or not created

on that interface

Programmer’s Reference

5.167

tfPoolIsrGetBuffer
#include <trsocket.h>

char TM_FAR * tfPoolIsrGetBuffer
(
ttUserInterface interfaceHandle,
int size
);

Function Description
Get a pre-allocated buffer from the recv pool, and queue that buffer in the pool
receive queue. Can only be called from an ISR.

Parameters
Parameter Description
interfaceHandle Interface handle as returned by

tfAddInterface
size Size of buffer to get from the pre-

allocated pool
Returns

A char * to the beginning of the data area to store the received data into or a
NULL pointer if there are no available receive pool buffers.

Turbo Treck Real-Time TCP/IP User’s Manual

5.168

tfPoolReceive
#include <trsocket.h>

int tfPoolReceive
(
ttUserInterface interfaceHandle,
char TM_FAR * TM_FAR * dataPtrPtr,
int TM_FAR * dataLengthPtr,
ttUserBufferPtr bufHandlePtr
);

Function Description
Remove first received buffer, from the pool receive queue. Store in dataPtrPtr,
dataLengthPtr, bufHandlePtr, the buffer data pointer, data length, and buffer handle
respectively. This function could be the drvRecvFuncPtr parameter to
tfAddInterface. Otherwise the user calls this function from the device driver receive
function. The parameters are identical to the device driver receive function.

Parameters
Parameter Description
interfaceHandle Interface handle as returned by

tfAddInterface
dataPtrPtr Pointer to area where to store the

buffer data pointer
dataLengthPtr Pointer to area where to store the

buffer data length
bufHandlePtr Pointer to area where to store the

buffer handle
Returns

Value Meaning
TM_DEV_OKAY Success
TM_DEV_ERROR No buffer in the pool receive queue

Programmer’s Reference

5.169

tfRecvInterface
#include <trsocket.h>

int tfRecvInterface
(
ttUserInterface interfaceHandle
);

Function Description
This function is used to start processing of an incoming packet from the device
driver. It first calls the driver’s receive routine and then begins processing of the
packet. The packet is processed in the context of the caller of this function.

Parameters
Parameter Description
interfaceHandle The Interface Handle of the device

to receive data from
Returns

Value Meaning
0 Success
TM_ENOBUFS Insufficient memory to complete the

operation

Turbo Treck Real-Time TCP/IP User’s Manual

5.170

tfRecvScatInterface

#include <trsocket.h>

int tfRecvScatInterface
(
ttUserInterface interfaceHandle
);

Function Description
This function is used to start processing of an incoming packet from the device
driver, and can handle scattered data within a single frame ("Gather Read").
When the user has been notified that an incoming packet has arrived (via either
tfCheckReceiveInterface, or tfWaitReceiveInterface), it then calls
tfRecvScatInterface so that the stack can call the driver scattered receive
function, and retrieve the data. tfRecvScatInterface first calls the driver's
scattered recv routine (as specified in the tfUseInterfaceScatRecv API), and then
begins processing of the packet. The packet is processed in the context of the
caller of this function.

The user should use tfRecvScatInterface instead of tfRecvInterface when the
user wishes to support scattered data within a received frame ("Gather Read")
in the device driver recv processing. The user needs to define
TM_USE_SCAT_DRV_RECV, and needs to have called
tfUseInterfaceScatRecv successfully on that interface. If the user has not called
tfUseInterfaceScatRecv on that interface, then tfRecvInterface should be
called instead.

Parameters
Parameter Description
interfaceHandle The interface Handle of the device

to receive the scattered data from.
Returns

Value Meaning
0 Success.
TM_ENOBUFS Insufficient memory to complete the

operation.
TM_EINVAL One of the parameters returned by

the scattered device driver recv
function is invalid

Programmer’s Reference

5.171

tfSendCompleteInterface
#include <trsocket.h>

void tfSendCompleteInterface
(
ttUserInterface interfaceHandle,
int flag
);

Function Description
This function is used to notify the stack that send has been completed and allow
the stack to free the outgoing buffers. If the device driver copies the packet before
attempting the send, it is permissible to call this routine from the context of the
send, otherwise, it must only be called after the device had actually sent the packet.

Parameters
Parameter Description
interfaceHandle The interface handle for the device

to process the send complete.
flag Indicates from where

tfSendCompleteInterface is called.
See below.
It is very important to set the
appropriate flag.

Flag Description
TM_DEV_SEND_COMPLETE_DRIVER tfSendCompleteInterface is being

called from the device driver.
TM_DEV_SEND_COMPLETE_APP tfSendCompleteInterface is being

called either from a send task or
from the main loop.

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

5.172

tfSendCompletePacketInterface

#include <trsocket.h>

void tfSendCompletePacketInterface
(
ttUserInterface interfaceHandle,
ttUserPacketPtr packetPtr,
int devDriverLockFlag
);

Function Description
This function is used to notify the stack that send has completed for a given
frame, so that the stack can remove it from the device send queue, and free it.
If the device driver copies the packet before attempting the send, it is permissible
to call this routine from the context of the send, otherwise, it must only be alled
after the device had actually sent the packet.
Use tfSendCompletePacketInterface, instead of tfSendCompleteInterface when
the device driver transmits the frames out of order.
tfSendCompletePacketInterface can only be used in conjunction with the
single device driver send call per frame. (See tfUseInterfaceOneScatSend, and
TM_USE_DRV_ONE_SCAT_SEND.)

Parameters
Parameter Description
interfaceHandle The interface handle for the device

to process the send complete
packetPtr Indicates which frame in the device

send queue needs to be dequeued,
and freed.

flag Indicates from where
tfSendCompletePacketInterface is
called. See below. It is very
important to set the appropriate
flag.

Flag Description
TM_DEV_SEND_COMPLETE_DRIVER tfSendCompletePacketInterface is

being called from the device driver.
TM_DEV_SEND_COMPLETE_APP tfSendCompletePacketInterface is

being called from either a send task,
or the main loop

Returns
 Nothing

Programmer’s Reference

5.173

tfSetIfMtu
int tfSetIfMtu
(
ttUserInterface interfaceHandle,
int ifMtu
);

Function Description
This function is used to set the Maximum Transmission Unit (MTU) for a device.
For Ethernet and PPP, this is typically set to 1500 bytes. The link MTU is always the
size of the largest IP packet which can be sent unfragmented over the link, which is
the maximum link-layer frame size minus any link-layer header and trailer overhead.
For PPP and Ethernet, this value can be changed via Path MTU Discovery to allow
larger frames and to prevent IP datagram fragmentation.

Parameters
Parameter Description
interfaceHandle The device driver entry that we

wish to get the physical address on.
ifMtu The Maximum Transmission Unit

for a device
Returns

Value Meaning
0 Success
TM_EINVAL One of the parameter is null or 0.

By default, the path MTU discovery code is enabled. If you do not need path MTU
in your trsystem.h, define:

#define TM_DISABLE_PMTU_DISC

This will prevent the compilation of the path MTU discovery code.

Turning off the path MTU discovery mechanism,
setsockopt
If the path MTU discovery code has been compiled in, and there is a need to
disable path MTU discovery on a given connection, the user can call the
Berkeley socket API setsockopt on the connection or listening socket prior to the
connection establishment, with the IP_PROTOTCP protocol level and
TCP_MAXSEG option name. If the option value is less than 64 bytes, then the
Turbo Treck stack will set the TCP MSS to the default value, which is the
outgoing device IP MTU minus 40 bytes.

Turbo Treck Real-Time TCP/IP User’s Manual

5.174

Turning off the path MTU discovery mechanism,
tfDisablePathMtuDisc
Another way of turning off the Path MTU discovery mechanism for a given
destination IP address is to use the new API tfDisablePathMtuDisc. This
function will disable path MTU discovery for the route to the given destination
IP address.

Path MTU estimates timeout values
When Path MTU discovery is enabled for an indirect TCP destination IP
address, the Turbo Treck stack will try to increase the path MTU estimate (up to
the device IP MTU) after the current path MTU estimate times out. Two new
options have been added to tfSetTreckOptions() to allow the user to change the
default timeout values for path MTU estimates.

Programmer’s Reference

5.175

tfUnConfigInterface
#include <trsocket.h>

int tfUnConfigInterface
(
ttUserInterface interfaceId,
unsigned char multiHomeIndex
);

Function Description
This function is used to remove an IP address from an interface for a particular multi
home index. By un-configuring an interface, we can then re-configure it with a new
IP address and netmask.

Parameters
Parameter Description
interfaceId The device entry
multiHomeIndex The Index for this IP address.

Returns
Value Meaning
0 Success
TM_EINVAL One of the parameters is invalid
TM_ENOENT Interface was not configured

Turbo Treck Real-Time TCP/IP User’s Manual

5.176

tfUseInterfaceOneScatSend

#include <trsocket.h>

int tfUseInterfaceOneScatSend
(
ttUserInterface interfaceHandle,
ttDevOneScatSendFunc devOneScatSendFunc
);

Function Description
Specify a driver driver scattered send function, that is called once per frame even
when the data is scattered on a given interface. tfUseInterfaceOneScatSend
must be called prior to calling tfConfigInterface, and after having called
tfAddInterface, to replace the device driver send function specified in
tfAddInterface.
Once tfUseInterfaceOneScatSend has been called, the device send logic in the
Turbo Treck stack will call the specified single call device driver
scattered send function, instead of the one provided in tfAddInterface.

Note: TM_USE_DRV_ONE_SCAT_SEND need to be defined in trsystem.h.

Note: This call is not supported on Point to Point interfaces, and is not
supported in combination with an interface transmit queue.

Parameters
Parameter Description
interfaceHandle The interface handle of the device

to send data through.
devOneScatSendFunc A function pointer to the device

driver's send function that handles
scattered data within a frame in a
single call

Returns
Value Meaning
0 Success
TM_EINVAL devOneScatSendFunc is null
TM_EPERM The interface has already been

opened, or the interface is a point to
point interface (SLIP, PPP), or a
transmit queue has been configured
on the interface.

Programmer’s Reference

5.177

devOneScatSendFunc type is defined as follows:

int devOneScatSendFunc
(
ttUserInterface interfaceHandle,
ttUserPacketPtr packetUPtr
);

devOneScatSendFunc Parameters:
Parameter Description
interfaceHandle The interface handle of the device

to send data through.
packetUPtr Pointer to a structure (ttUserPacket)

that contains all the information on
the frame to be sent.

ttUserPacket Fields:
ttUserPacket field Description
ptkuLinkNextPtr Points to the next ttUserPacket

structure
pktuLinkDataPtr Points to the data in the current link
pktuLinkDataLength Contains the length of the data in

the current link
pktuLinkChainDataLength Contains the total length of the

scattered data. Its value is ony valid
in the first link

pktuLinkExtraCount Contains the number of extra links
besides the first one. Its value is
only valid in the first link.

The single call per frame user device driver send function will loop through all
the links of the scattered frame, in order to send a complete frame.

Turbo Treck Real-Time TCP/IP User’s Manual

5.178

tfUseInterfaceScatRecv

#include <trsocket.h>

int tfUseInterfaceScatRecv
(
ttUserInterface interfaceHandle,
ttDevScatRecvFunc devScatRecvFunc
);

Function Description
By default the stack expects all data within a frame given by the user device
driver recv function to be contiguous. Some device drivers support receiving
data within a frame in scattered buffers ("Gather Read"), because it is more
efficient.
tfUseInterfaceScatRecv replaces the default device driver recv function added in
tfAddInterface with a driver driver scattered recv function that is called once per
frame, even when the device driver received data is scattered on a given interface
("Gather Read").
tfUseInterfaceScatRecv must be called prior to calling tfConfigInterface, and
after having called tfAddInterface, to replace the device driver recv function
specified in tfAddInterface.
If tfUseInterfaceScatRecv has been called successfully, the user needs to call
tfRecvScatInterface instead of tfRecvInterface. tfRecvScatInterface will call the
modified device driver recv function specified in the tfUseInterfaceScatRecv call.

TM_USE_DRV_SCAT_RECV need to be defined in trsystem.h.

Parameters
Parameter Description
interfaceHandle The interface handle of the device

to recv data from.
devScatRecvFunc A function pointer to the device

driver's recv function that handles
scattered data within a frame in a
single call.

Returns
Value Meaning
0 Success
TM_EINVAL devScatRecvFunc is null
TM_EPERM The interface has already been

opened

Programmer’s Reference

5.179

devScatRecvFunc type is defined as follows:

int devScatRecvFunc
(
ttUserInterface interfaceHandle,
ttDruBlockPtrPtr uDevBlockPtrPtr,
int * uDevBlockCountPtr,
int * flagPtr
);

devScatRecvFunc Parameters:
devScatRecvFunc Parameter Description
interfaceHandle The interface handle of the device

to recv data from.
uDevBlockPtrPtr Address of an area where to store

an array of user blocks describing
the scattered data (one block per
scattered buffer).

uDevBlockCountPtr Address of an area where to store
the number of scattered buffers
within a frame.

flagPtr Address of an area where to store
ownership of the scattered buffers
that compose the received frame.

Upon return from the device driver scattered recv function, *uDevBlockPtrPtr
points to an array of ttDruBlock.
There is one ttDruBlock per scattered buffer in the received frame.
Each ttDruBlock element contains a pointer to a user buffer, a pointer to the
beginning of the user data in the user buffer, and the user data length in the user
buffer.

Turbo Treck Real-Time TCP/IP User’s Manual

5.180

ttDruBlock fields Description
druDataPtr points to beginning of data
druDataLength indicates the data length
druBufferPtr pointer to be passed to the device

driver free function if user sets the
flag to
TM_DEV_SCAT_RECV_USER_BUFFER
in the driver recv call function.
(See *flagPtr below.)

druStackBufferPtr pointer to stack pre-allocated user
buffer if user sets the flag to
TM_DEV_SCAT_RECV_STACK_BUFFER
in the driver recv call function.
(See *flagPtr below.)

If the device driver scattered recv function sets *flagPtr to
TM_DEV_SCAT_RECV_STACK_BUFFER, then druStackBufferPtr should point
to a buffer pointed to by the first parameter of either tfGetEthernetBuffer, or
tfGetDriverBuffer, and the stack will be responsible for freeing that buffer, when
the stack is done processing that buffer. If the device driver scattered recv
function sets *flagPtr to TM_DEV_SCAT_RECV_USER_BUFFER, then
druBufferPtr points to a user allocated buffer. When the stack is done processing
that buffer, the stack will call the device driver free function (as set in
tfAddInterface).
The user is responsible for managing the memory containing the array of
ttDruBlock. It is guaranteed that when the stack calls the modified driver recv
function on an interface, the array of ttDruBlock previously given to the stack by
a previous call to the driver recv function on the same interface will not be
accessed anymore. So it is safe for the user to re-use the array itself, then. On the
other hand, it is only safe to re-use a user allocated buffer after the device driver
free function has been called.
*flagPtr parameter Description
TM_DEV_SCAT_RECV_STACK_BUFFER The scattered buffers used in the

frame are pre-allocated stack
buffers. The stack will be respon-
sible for freeing these buffers.

TM_DEV_SCAT_RECV_USER_BUFFER The scattered buffers used in the
frame belong to the user. When the
stack is done processing a buffer in
a received frame, the device driver
free function as specified in
tfAddInterface will be called for that
buffer.

Programmer’s Reference

5.181

tfUseInterfaceXmitQueue
#include <trsocket.h>

int tfUseInterfaceXmitQueue
(
ttUserInterface InterfaceHandle
short numberXmitDescriptors
);

Function Description
Enable/Disable the use of an interface transmit queue. If specified depth
(numberXmitDescriptors parameter) is zero, this option is turned off. Otherwise this
function allocate an empty transmit ring of numberXmitDescriptors elements. When
an interface transmit queue is used, if the device driver send function returns an
error, because the chip is not ready to transmit, a pointer to the buffer that could not
be transmitted (along with its length, and flag) is stored in an empty slot, in the
Turbo Treck device transmit queue. The device transmit queue should be big enough
to hold pointers to all the buffers that will be sent by the application. The size of the
data sent by an application is limited by the socket send queue size. So, an interface
transmit queue should be big enough to hold pointers to buffers sent from all the
application sockets through that particular interface. The space allocation overhead
for a x entries device transmit queue is 12 + x * 8 bytes. So for a device transmit
queue containing 1000 slots, the overhead is 8012 bytes.

Note: This function can only be called when the device is not configured.
Cannot be called for a point to point interface. Cannot be called if a transmit
task is used.

 If the interface transmit queue is enabled, the user should call
errorCode =
tfIoctlInterface(interfaceHandle, TM_DEV_IOCTL_EMPTY_XMIT_FLAG,
 (void *)0, 0);
periodically to try and empty the device transmit queue (which contains all the
buffers that the device driver could not send right away).

Turbo Treck Real-Time TCP/IP User’s Manual

5.182

Parameters
Parameter Description
interfaceHandle The Interface Handle of the device

we are waiting to be ready.
numberXmitDescriptors Length of the transmit queue. If

positive, the interface transmit
queue is enabled. If zero, it is
disabled.

Returns
Value Meaning
0 Success
TM_ENOBUFS Not enough memory to allocate the

empty transmit ring.
TM_EPERM Device/Interface already

configured/opened, or User already
uses a transmit task, or device/
interface is a point to point interface
(i.e PPP, or SLIP.)

Programmer’s Reference

5.183

tfUseIntfDriver
#include <trsocket.h>

ttUserInterface tfUseIntfDriver
(
char * namePtr,
ttUserLinkLayer linkLayerHandle,
int * *drvAddErrorPtr
);

Function Description
tfUseIntfDriver adds a loop back driver below the link layer, and returns an interface
handle. An example would be as follows:

ethernetLinkLayerHandle = tfUseEthernet();
myInterfaceHandle=tfUseIntfDriver (

“TEST1”,
etherLinkLayerHandle,
&errorCode);

This function is very useful to debug a link layer. When using the loop back
driver, some macro definitions, configurations are necessary to insure that the
loop back driver is used and not bypassed for a given destination IP address
(peer IP address).

Peer IP address Steps to ensure that the loop back driver
is used

configured in the stack Define TM_LOOP_TO_DRIVER, or
Define TM_SINGLE_INTERFACE_HOME

not configured in the stack Define TM_DEV_IP_NO_CHECKIf the
link layer is Ethernet, then a proxy arp
entry should be added for the peer IP
address.

Parameters
Parameter Description
namePtr The callers name for the device

(each call to tfUseIntfDriver must
use a unique name). The name
length cannot exceed
TM_MAX_DEVICE_NAME –1 (13
bytes).

Turbo Treck Real-Time TCP/IP User’s Manual

5.184

linkLayerHandle The link layer (layer 2) protocol
handle that this interface will use.
This is returned by tfUseEthernet,
tfUseAsyncPpp, or tfUseSlip.

drvAddErrorPtr A pointer to an int that will contain
an error (if one occurred).

Returns
An Interface Handle or a NULL handle when an error occurs. If an error occurs,
the error is stored in *drvAddErrorPtr.

ErrorCode Description
TM_EINVAL One of the parameters is invalid
TM_EALREADY Device with same name has already

been added.
TM_ENOBUFS Not enough buffers to allocate a

device entry.

Programmer’s Reference

5.185

tfUseScatIntfDriver

#include <trsocket.h>

ttUserInterface tfUseScatIntfDriver
(
char * namePtr,
ttUserLinkLayer linkLayerHandle,
int * errorCode
);

Function Description
tfUseScatIntfDriver adds a loop back driver below link layer using one scattered
device driver send call, and scattered device driver recv. tfUseIntfDriver and
tfUseScatIntfDriver are very useful to debug a link layer. tfUseScatIntfDriver
avoids copying the data in the loop back driver.

Example:

ethernetLinkLayerHandle = tfUseEthernet();
myInterfaceHandle = tfUseScatIntfDriver(

 "TESTSCAT",
 ethernetLinkLayerHandle
 &errorCode);

Note: Both TM_USE_ONE_SCAT_DRV_SEND, and
TM_USE_SCAT_DRV_RECV need to be defined. If either one of these macros
is not defined, then tfUseScatIntfDriver will revert to tfUseIntfDriver.

When using the loop back driver (scattered or non scattered version), some
macro definitions, configurations are necessary to insure that the loop back
driver is used and not bypassed for a given destination IP address (peer IP
address).

Peer IP address Steps to ensure the loop back driver is used
configured in the stack Define TM_LOOP_TO_DRIVER, or

Define TM_SINGLE_INTERFACE_HOME

not configured in the stack Define TM_DEV_IP_NO_CHECK
If the link layer is Ethernet, then a proxy
arp entry should be added for the peer IP
address.

Turbo Treck Real-Time TCP/IP User’s Manual

5.186

Parameters
Parameter Description
namePtr The callers name for the device

(each call to tfUseScatIntfDriver
must use a unique name). The name
length cannot exceed
TM_MAX_DEVICE_NAME –1 (13
bytes).

linkLayerHandle The link layer (layer 2) protocol
handle that this interface will use.
This is returned by tfUseEthernet,
tfUseAsyncPpp, or tfUseSlip.

drvAddErrorPtr A pointer to an int that will contain
an error (if one occurred).

Returns
An Interface Handle or a NULL handle when an error occurs. If an error occurs,
the error is stored in *drvAddErrorPtr.

ErrorCode Description
TM_EINVAL One of the parameters is invalid
TM_EALREADY Device with same name has already

been added.
TM_ENOBUFS Not enough buffers to allocate a

device entry.

Programmer’s Reference

5.187

tfWaitReceiveInterface
#include <trsocket.h>

int tfWaitReceiveInterface
(
ttUserInterface interfaceHandle
);

Function Description
This function is used to wait for the tfNotifyInterfaceIsr routine to be called from
the device driver’s receive interrupt service routine. If there is no call to
tfNotifyInterfaceIsr , then it waits. It returns each time that there is ONE new packet
to be received (which is signaled by tfNotifyInterfaceIsr). The caller should then
call tfRecvInterface when this call completes successfully.

Note: tfWaitReceiveInterface can only be used when there is a separate receive
task.

Parameters
Parameter Description
interfaceHandle The interface handle for the device

we wish to wait for data for.
Returns

Value Meaning
0 Success
TM_ENOBUFS Insufficient memory to complete

operation

Turbo Treck Real-Time TCP/IP User’s Manual

5.188

tfWaitSentInterface
#include <trsocket.h>

int tfWaitSentInterface
(
ttUserInterface interfaceHandle
);

Function Description
This function is used to wait for a tfNotifyInterfaceIsr function to be called from the
transmit complete interrupt service routine, if there is none, then it waits. This
function will wait until the accumulated numberBytesSent notified by
tfNotifyInterfaceIsr has reached TM_NOTIFY_SEND_LOW_WATER (2048 by
default).

Note: This function can only be used when there is a separate send complete task.

Parameters
Parameter Description
interfaceHandle The interface handle of the device

to wait for a transmit complete to
occur

Returns
Value Meaning
0 Success
TM_ENOBUFS Insufficient memory to complete the

operation

Programmer’s Reference

5.189

tfWaitXmitInterface
#include <trsocket.h>

int
(tfWaitXmitInterface
ttUserInterface interfaceHandle
);

Function Description
This function is used to wait for data ready to be sent from the bottom of the Turbo
Treck stack to the device driver (data queued to the interface send queue). If there
is no data ready to be transmitted, then it waits. The caller should then call
tfXmitInterface, when this call completes successfully.

Note: tfWaitXmitInterface can only be used when there is a separate transmit
task.

Parameters
Parameter Description
interfaceHandle The interface handle for the device

to which to send data.
Returns

Value Meaning
0 Success
TM_ENOBUFS Insufficient memory to complete

operation

Turbo Treck Real-Time TCP/IP User’s Manual

5.190

tfXmitInterface
#include <trsocket.h>

int tfXmitInterface
(
ttUserInterface interfaceHandle
);

Function Description
tfXmitInterface is used to call the device driver send function with the next packet
ready to be transmitted in the device/interface send queue. The packet is sent in the
context of the caller of this function.

Parameters
Parameter Description
interfaceHandle The Interface Handle of the device

to which to send data.
Returns

Value Meaning
0 Success
TM_ENOENT No packet was ready to be

transmitted TM_ENXIO
Device/interface was not opened
(or configured)

TM_EIO Device driver send function
returned an error. The Turbo Treck
stack freed the packet since the
device driver send failed.

Programmer’s Reference

5.191

Ethernet Link Layer API
tfGetEthernetBuffer
#include <trsocket.h>

char * tfGetEthernetBuffer
(
ttUserBufferPtr userBufferPtr
);

Function Description
This function is used to get a buffer from the system for the user to use for an
Ethernet device. The data pointer is offset by two bytes to allow the data portion to
be long word aligned. It is not required for a user to use our buffer pool because
some devices may not support it.

Parameters
Parameter Description
userBufferPtr A pointer to a ttUserBuffer variable

that the user buffer handle is
stored.

Returns
A char * to the beginning of the data area to store the received data into or a
NULL pointer if there is no memory to complete the operation

Turbo Treck Real-Time TCP/IP User’s Manual

5.192

tfUseEthernet
#include <trsocket.h>

ttUserLinkLayer tfUseEthernet
(
void
);

Function Description
This function is used to initialize the Ethernet Link Layer

Parameters
None

Returns
 The Ethernet link layer handle or NULL if there is an errorNull Link Layer API

Programmer’s Reference

5.193

Null Link Layer API

tfUseNullLinkLayer
#include <trsocket.h>

ttUserLinkLayer tfUseNullLinkLayer
(
void
);

Function Description
This function is used to initialize the Null Link Layer

Parameters
None

Returns
The Null link layer handle or NULL if there is an error

Turbo Treck Real-Time TCP/IP User’s Manual

5.194

SLIP Link Layer API

tfGetSlipPeerIpAddress

#include <trsocket.h>

int tfGetSlipPeerIpAddress
(
ttUserInterface interfaceHandle,
ttUserIpAddress * ifIpAddress
);

Function Description
This function is used to get the SLIP address that the remote SLIP has used. This
function should be called after tfOpenInterface has completed successfully.

If a default gateway needs to be added for that interface, then the retrieved IP
address should be used to add a default gateway through the corresponding
interface.

If a static route needs to be added for that interface, then the retrieved IP address
should be used to add a static route through the corresponding interface.

Parameters
Parameter Description
interfaceHandle The interface Handle to get the Peer

IP address from.
ifIpAddressPtr The pointer to the buffer where the

Peer slip IP address will be stored
into.

Returns
Value Meaning
0 Success
TM_EINVAL One of the parameters is null, or the

device is a LAN device
TM_ENETDOWN Interface is not configured

Note: Also see tfSetSlipPeerIpAddress

Programmer’s Reference

5.195

tfSetSlipPeerIpAddress

#include <trsocket.h>

int tfSetSlipPeerIpAddress
(
ttUserInterface interfaceHandle,
ttUserIpAddress ifIpAddress
);

Function Description
This function is used to set a default remote SLIP IPaddress. This IP address will be
used as the default remote point to point IP address, in case no remote IP address
is negotiated with SLIP. If no IP address is set with this function, then the local IP
address + 1 will be used as the default IP address for the remote SLIP for routing
purposes tfSetSlipPeerIpAddress can only be called between tfAddInterface (or
tfCloseInterface) and tfOpenInterface.

Parameters
Parameter Description
interfaceHandle The interface handle to update the

Peer IP address in
ifIpAddress The IP address to use for routing

purposes for the remote SLIP
system

Returns
Value Meaning
0 Success
TM_EINVAL The interface handle is null, or the

device is a LAN device
TM_EISCONN SLIP connection is already estab-

lished
Note: Also see tfGetSlipPeerIpAddress

Turbo Treck Real-Time TCP/IP User’s Manual

5.196

tfSlipSetOptions
#include <trsocket.h>

int tfSlipSetOptions
(
ttUserInterface interfaceHandle,
int optionName,
void TM_FAR * optionValuePtr,
int optionLength
);

Function Description
Configure SLIP options. OptionValuePtr points to a variable of type as described
below. OptionLenth contains the sizeof that variable. The only option supported
is TM_SLIP_OPT_SEND_BUF_SIZE.

optionName
TM_SLIP_OPT_SEND_BUF_SIZE

Description
Length of data buffered by the SLIP link layer (but not beyond the end
of a packet) before the device driver send function is called.
Default: 1 byte

Data Type
unsigned short

Parameters
Parameter Description
interfaceHandle Interface handle of the SLIP

interface we want to set the option
on.

optionName The option to set. See above.
optionValuePtr The pointer to a user variable into

which the option value is set. User
variable is of data type described
above.

optionLength Size of the user variable, which is
the size of the option data type.

Programmer’s Reference

5.197

Returns
Value Meaning
0 Success
TM_ENOBUFS Insufficient memory to complete

operation
TM_EINVAL Invalid option length for option, or

invalid option value for option.
TM_EPERM Device/interface is not a SLIP

interface
TM_EPROTONOSUPPORT Option name not supported.

Turbo Treck Real-Time TCP/IP User’s Manual

5.198

tfUseSlip
#include <trsocket.h>

ttUserLinkLayer tfUseSlip
(
void
);

Function Description
This function is used to initialize the SLIP link layer.

Parameters
None

Returns
The SLIP link layer handle or NULL if there is an error.

Programmer’s Reference

5.199

ARP/Routing Table API
tfAddArpEntry
#include <trsocket.h>

int tfAddArpEntry
(
ttUserIpAddress arpIpAddress,
char * physAddrPtr,
int physAddrLength
);

Function Description
This function is used add an entry to the ARP cache. This function will allow the
user to manipulate the ARP cache beyond standard means. Normally the TCP/IP
stack maintains the ARP cache.

Parameters
Parameter Description
arpIpAddress The IP address to add to the ARP

cache
physAddrPtr A pointer to the character array that

contains the physical address
physAddrLength The length of the physical address

Returns
Value Meaning
0 Success
TM_EINVAL Bad parameter.

Turbo Treck Real-Time TCP/IP User’s Manual

5.200

tfAddDefaultGateway
#include <trsocket.h>

int tfAddDefaultGateway
(

ttUserInterface interfaceId,
ttUserIpAddress gatewayIpAddress
);

Function Description
This function is used to add the system default gateway for all interfaces.

Parameters
Parameter Description
interfaceId The device entry
gatewayIpAddress The default gateway IP address in

Network Byte Order
Returns

Value Meaning
0 Success
TM_ENOBUFS Not enough buffer to allocate a

routing entry
TM_EALREADY A default gateway is already in the

routing table
TM_EHOSTUNREACH The gateway is not directly

accessible
TM_EINVAL One of the parameters is bad: the

gatewayIpAddress is zero, or
interfaceId refers to the loopback
interface

Programmer’s Reference

5.201

tfAddMcastRoute
#include <trsocket.h>

int tfAddMcastRoute
(
ttUserInterface interfaceId,
ttUserIpAddress mcastAddress,
ttUserIpAddress netmask,
unsigned char mhomeIndex
);

Function Description
This function is used to add a multicast route associating a specific multicast
destination address with a specific outgoing interface. Normally the netmask
parameter is set to all 1’s.

Parameters
Parameter Description
interfaceId The interface ID to use to add this

routing entry. Identifies the
outgoing interface to use for
packets sent to the multicast
destination address specified by
mcastAddress.

mcastAddress The multicast destination address
to add the route for.

netmask The netmask for the route. Nor-
mally, this will be all 1’s, i.e.
inet_addr(“255.255.255.255”), which
means that there must be an exact
match of the packet destination
address with mcastAddress for this
route to be used to send the packet.

mhomeIndex The multi-home index to use to add
this routing entry. This is the multi-
home index of a valid IP address
that is already configured on the
interface identified by interfaceId.
This IP address is used as the
default source IP address in packets
sent to mcastAddress.

Turbo Treck Real-Time TCP/IP User’s Manual

5.202

Returns
Value Meaning
TM_ENOERROR Successful.
TM_EINVAL interfaceId is an invalid interface ID.

TM_ENETDOWN The interface specified by
interfaceId is not configured.

TM_EADDRNOTAVAIL Either the interface specified by
interfaceId was not configured with
the multicast enabled flag (i.e.
TM_DEV_MCAST_ENB), or
mcastAddress is not a valid
multicast IP address.

TM_EALREADY This multicast route already exists.

Programmer’s Reference

5.203

tfAddProxyArpEntry
#include <trsocket.h>

int tfAddProxyArpEntry
(
ttUserIpAddress arpIpAddress
);

Function Description
Add an entry to the Proxy ARP table for the given IP address. arpIpAddress
is expected to be in network byte order.

Parameters
Parameter Description
arpIpAddrss Ip address on behalf of which the

system will reply to ARP requests
Returns

Value Meaning
TM_ENOERROR Success
TM_EINVAL Bad parameter (0 IP address

parameter)
TM_EALREADY Entry already in PROXY ARP table
TM_ENOBUFS Couldn’t allocate proxy ARP entry

Turbo Treck Real-Time TCP/IP User’s Manual

5.204

tfAddStaticRoute
#include <trsocket.h>

int tfAddStaticRoute
(
ttUserInterface interfaceId,
ttUserIpAddress destIpAddress,
ttUserIpAddress destNetMask,
ttUserIpAddress gateway,
int hops
);

Function Description
This function is used to add a route for the interface. It allows packets for a
different network to be routed to the interface.

Parameters
Parameter Description
interfaceId The interface ID to use to add this

routing entry
destIpAddress The IP address to add the route for
destNetMask The net mask for the route
gateway IP address of the gateway for this

route.
hops Number of routers between this

host and the route.
Returns

Value Meaning
0 Success
TM_ENOBUFS Not enough buffer to allocate a

routing entry
TM_EALREADY The route is already in the routing

table.
TM_EHOSTUNREACH The gateway is not directly

accessible.
TM_EINVAL One of the first 4 parameters is null

or 0.

Programmer’s Reference

5.205

tfDelArpEntryByIpAddr
#include <trsocket.h>

int tfDelArpEntryByIpAddr
(
ttUserIpAddress arpIpAddress
);

Function Description
This function is used delete an entry in the ARP cache. This function will allow the
user to manipulate the ARP cache beyond standard means. Normally, the TCP/IP
stack maintains the ARP cache.

Parameters
Parameter Description
arpIpAddress The IP address to delete in the ARP

cache
Returns

Value Meaning
0 Success
TM_EINVAL Bad parameter.

Turbo Treck Real-Time TCP/IP User’s Manual

5.206

tfDelArpEntryByPhysAddr
#include <trsocket.h>

int tfDelArpEntryByPhysAddr
(
char * physAddrPtr,
int physAddrLength
);

Function Description
This function is used to delete an entry in the ARP cache by looking up the entry by
the Physical Address. This function will allow the user to manipulate the ARP
cache beyond standard means. Normally, the TCP/IP stack maintains the ARP cache.

Parameters
Parameter Description
physAddrPtr The Physical Address to delete in

the ARP cache
physAddrLength The length of the physical address

Returns
Value Meaning
0 Success
TM_EINVAL Bad parameter.

Programmer’s Reference

5.207

tfDelDefaultGateway
#include <trsocket.h>

int tfDelDefaultGateway
(
ttUserIpAddress gatewayIpAddress
);

Function Description
This function is used to delete the system default gateway for all interfaces.

Parameters
Parameter Description
gatewayIpAddress The default gateway IP address in

Network Byte Order
Returns

Value Meaning
0 Success
TM_EINVAL Parameter is 0
TM_ENOENT No default gateway was found

Turbo Treck Real-Time TCP/IP User’s Manual

5.208

tfDelProxyArpEntry
#include <trsocket.h>

int tfDelProxyArpEntry
(
ttUserIpAddress arpIpAddress
);

Function Descrpition:
This function deletes an entry from the Proxy ARP table for the given IP address.
arpIpAddress is expected to be in network byte order.

Parameters
Parameter Description
arpIpAddrss IP address on behalf of which the

system will stop replying to ARP
requests.

Returns
Value Meaning
TM_ENOERROR Success
TM_EINVAL Bad parameter (0 IP address

parameter)
TM_ENOENT Entry was not in PROXY ARP table.

Programmer’s Reference

5.209

tfDelStaticRoute
#include <trsocket.h>

int tfDelStaticRoute
(
ttUserIpAddress destIpAddress,
ttUserIpAddress destNetMask
);

Function Description
This function is used to delete a route from the interface.

Parameters
Parameter Description
destIpAddress The IP Address to add the route for
destNetMask The net mask for the route

Returns
Value Meaning
0 Success
TM_EINVAL One of the parameter is 0
TM_ENOENT No routing enry for this route in the

routing table.
TM_EPERM Cannot delete an ARP entry with

tfDelStaticRoute

Turbo Treck Real-Time TCP/IP User’s Manual

5.210

tfDisablePathMtuDisc
#include <trsocket.h>

int tfDisablePathMtuDisc
(
ttUserIpAddress destIpAddress,
unsigned short pathMtu
);

Function Description
This function is used to disable path MTU discovery for a given route. If pathMtu
is zero, or bigger than the outgoing device IP MTU, then we will default the route IP
MTU to the outgoing device IP MTU; otherwise we will set the route IP MTU with
the passed parameter value.

Parameters
Parameter Description
destIpAddress The IP address destination on

which route we want to disable path
MTU discovery.

pathMtu New fixed IP MTU. If zero, we
default to the device IP MTU.

Returns
Value Meaning
0 Success
TM_EINVAL DestIpAddress parameter is zero.
TM_EPERM Route is direct. No path MTU

discovery is ever going to take
place.

TM_EHOSTUNREACH No route to destination IP address.
TM_ENOBUFS Not enough memory to allocate new

routing entry.

Programmer’s Reference

5.211

tfGetArpEntryByIpAddr
#include <trsocket.h>
int tfGetArpEntryByIpAddr
(
ttUserIpAddress arpIpAddress,
char * physAddrPtr,
int physAddrLength
);

Function Description
This function is used retrieve an entry from the ARP cache by looking up the entry
by the IP address. This function will allow the user to manipulate the ARP cache
beyond standard means. Normally the TCP/IP stack maintains the ARP cache.

Parameters
Parameter Description
arpIpAddress The IP address to use to lookup the

entry by
physAddrPtr The Pointer to the buffer where to

store the physical address
physAddrLength The length of the physical address

buffer
Returns

Value Meaning
0 Success
TM_EINVAL Bad parameter
TM_ENOENT No ARP entry found with this IP

address

Turbo Treck Real-Time TCP/IP User’s Manual

5.212

tfGetArpEntryByPhysAddr
#include <trsocket.h>

int tfGetArpEntryByPhysAddr
(
char * physAddrPtr,
int physAddrLen,
ttUserIpAddress * arpIpAddressPtr
);

Function Description
This function is used retrieve an entry from the ARP cache by looking up the entry
by the Physical Address. This function will allow the user to manipulate the ARP
cache beyond standard means. Normally, the TCP/IP stack maintains the ARP
cache.

Parameters
Parameter Description
physAddrPtr The Physical Address to lookup the

entry in the ARP cache.
physAddrLen The length of the physical address
arpIpAddressPtr The location where to store the IP

address of the matching physical
entry

Returns
Value Meaning
0 Success
TM_EINVAL Bad parameter
TM_ENOENT No ARP entry found with this

physical address

Programmer’s Reference

5.213

tfGetDefaultGateway
#include <trsocket.h>

int tfGetDefaultGateway
(
ttUserIpAddress TM_FAR * gwayIpAddPtr
);

Function Description
This function is called from the socket interface to get the default gateway IP
address. The default gateway IP address will be stored in network byte order.

Parameters
Parameter Description
gwayIpAddrPtr Pointer to store gateway IP address

into.
Returns

Value Meaning
TM_ENOERROR Success
TM_EINVAL Bad parameter
TM_ENOENT No default gateway

Turbo Treck Real-Time TCP/IP User’s Manual

5.214

tfRtDestExists
#include <trsocket.h>

int tfRtDestExists
(
ttUserIpAddress destIpAddress,
ttUserIpAddress destNetMask
);

Function Description
Find out whether a route to a destination, given by the pair destination IP
address and destination IP network mask, exists.

Parameters
Parameter Description
destIpAddress Destination IP address
destNetMask Destination IP Network Mask

Returns
Value Meaning
0 Success
TM_EHOSTUNREACH No route to destination.

Programmer’s Reference

5.215

tfRegisterIpForwCB
#include <trsocket.h>

int tfRegisterIpForwCB
(
ttUserIpForwCBFuncPtr ipForwCBFuncPtr
);

Function Description
Used to register a function for the Treck stack to call when a packet cannot be
forwarded. The function’s parameters will indicate the source IP address, and
destination IP address of the packet in network byte order. If the call back
function returns an error code, then the stack will send a host unreachable ICMP
error message as before. If the call back function returns TM_ENOERROR, then
the stack will silently drop the packet. The prototype for the callback function is:
int ipForwardCallback(ttUserIpAddress srcIpAddress, ttUserIpAddress
destIpAddress);

Parameters
Parameter Description
ipForwCBFuncPtr A pointer to the forwarding callback

function.
Returns

Value Meaning
0 Success

Turbo Treck Real-Time TCP/IP User’s Manual

5.216

tfUseRip
#include <trsocket.h>

int tfUseRip
(
void
);

Function Description
This function is called to start the RIPv2 Listener. It will also turn on the
TM_OPTION_RIP_ENABLE mentioned in tfSetTreckOptions above.

Parameters
None

Returns
Value Meaning
0 Success
TM_EMFILE Not enough sockets to open the

RIP socket
TM_ADDRINUSE Another socket is already bound to

the RIP UDP port.
TM_EALREADY tfUseRip has already been called

successfully.

Programmer’s Reference

5.217

Timer Interface API
tfTimerExecute
#include <trsocket.h>

void tfTimerExecute
(
void
);

Function Description
This function is used to execute timers that have expired.

Parameters
None

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

5.218

tfTimerUpdate
#include <trsocket.h>

void tfTimerUpdate
(
void
);

Function Description
This function updates the internal Turbo Treck timers. It tells them that one clock
tick has passed. This call cannot be made from an Interrupt Service Routine.

Note: The integrator must decide if the Turbo Treck timers should be updated
from an ISR, main loop, or a timer task and choose this call or
tfTimerUpdateIsr.

Parameters
None

Returns
Nothing

Programmer’s Reference

5.219

tfTimerUpdateIsr
#include <trsocket.h>

void tfTimerUpdateIsr
(
void
);

Function Description
This function updates the internal Turbo Treck timers. It tells them that one clock
tick has passed. This call is designed to be called from an Interrupt Service
Routine.

Note: The integrator must decide if the Turbo Treck timers should be updated
from an ISR, main loop, or a timer task and choose this call or tfTimerUpdate.

Parameters
None

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

5.220

Kernel/RTOS Interface
tfKernelCreateCountSem
#include <trsocket.h>

int tfKernelCreateCountSem
(
ttUserGenericUnionPtr countingSemaphorePtr
);

Function Description
RTOS SPECIFIC

This function is used to create a counting semaphore that is used by Turbo
Treck.

Parameters
Parameter Description
countingSemaphorePtr A RTOS Counting semaphore

Returns
Value Meaning
 0 Success
-1 An error occurred

Programmer’s Reference

5.221

 tfKernelCreateEvent
#include <trsocket.h>

void tfKernelCreateEvent
(
ttUserGenericUnionPtr eventPtr
);

Function Description
RTOS SPECIFIC

This function is used to create an event structure for pend/post from an ISR.

Parameters
Parameter Description
eventPtr A pointer to an ISR event structure

that is returned from an RTOS
Returns

Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

5.222

tfKernelDeleteCountSem
#include <trsocket.h>

int tfKernelDeleteCountSem
(
ttUserGenericUnionPtr
countingSemaphorePtr
);

Function Description
RTOS SPECIFIC

This function is used to remove a counting semaphore.

Parameters
Parameter Description
countingSemaphorePtr The counting semaphore to delete

Returns
Value Meaning
 0 Operation completed successfully
-1 An error occurred

Programmer’s Reference

5.223

tfKernelError
#include <trsocket.h>

void tfKernelError
(
char * functionName,
char * errorMessage
);

Function Description
RTOS SPECIFIC

This function is used to report an error and stop the system (Debug Only).

Parameters
Parameter Description
functionName The Null terminated string contain-

ing the function name where the
error occurred

errorMessage The Null terminated string contain-
ing the error message

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

5.224

tfKernelFree
#include <trsocket.h>

int tfKernelFree
(
void * memoryBlockPtr
);

Function Description
RTOS SPECIFIC

This function is used to free a block of memory back to the RTOS.

Parameters
Parameter Description
memoryBlockPtr The pointer to the area of memory

to free
Returns

Value Meaning
 0 Operation completed successfully
-1 An error occurred

Programmer’s Reference

5.225

tfKernelInitialize
#include <trsocket.h>

void tfKernelInitialize
(
void
);

Function Description
RTOS SPECIFIC

This function is used to initialize the Kernel interface.

Parameters
None

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

5.226

tfKernelInstalIsrHandler
#include <trsocket.h>

void tfKernelInstalIsrHandler
(
ttUserIsrHandlerPtr handlerPtr,
unsigned long offset
);

Function Description
RTOS SPECIFIC

This function is used to install an Interrupt Service Routine (ISR) handler.

Parameters
Parameter Description
handlerPtr The pointer to the function that the

ISR should call
offset Offset into the vector table, where

this handler should be installed
Returns

Nothing

Programmer’s Reference

5.227

tfKernelIsrPostEvent
#include <trsocket.h>

void tfKernelIsrPostEvent
(
ttUserGenericUnionPtr eventPtr
);

Function Description
RTOS SPECIFIC

This function is used to resume waiting tasks that were waiting on this event. It
is called from an ISR.

Parameters
Parameter Description
eventPtr The event to post on

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

5.228

tfKernelMalloc
#include <trsocket.h>

void * tfKernelMalloc
(
unsigned size
);

Function Description
RTOS SPECIFIC

This function is used to allocate a block of memory.

Parameters
Parameter Description
size The amount of memory to allocate

Returns
A pointer to the beginning of the memory block

Programmer’s Reference

5.229

tfKernelPendCountSem
#include <trsocket.h>

int tfKernelPendCountSem
(
ttUserGenericUnionPtr countingSemaphore
);

Function Description
RTOS SPECIFIC

This function is used to wait on a counting semaphore.

Parameters
Parameter Description
countingSemaphore The counting semaphore to wait on

Returns
Value Meaning
 0 Operation completed successfully
-1 An error occurred

Turbo Treck Real-Time TCP/IP User’s Manual

5.230

tfKernelPendEvent

#include <trsocket.h>

void tfKernelPendEvent
(
ttUserGenericUnionPtr eventPtr
);

Function Description
RTOS SPECIFIC

This function is used to wait on an event from ISR.

Parameters
Parameter Description
eventPtr The event to wait on

Returns
Nothing

Programmer’s Reference

5.231

tfKernelPostCountSem

#include <trsocket.h>

int tfKernelPostCountSem
(
ttUserGenericUnionPtr countingSemaphore
);

Function Description
RTOS SPECIFIC

This function is used for the signal processes waiting on a counting semaphore.

Parameters
Parameter Description
countingSemaphore The counting semaphore to post to

Returns
Value Meaning
 0 Operation completed successfully
-1 An error occurred

Turbo Treck Real-Time TCP/IP User’s Manual

5.232

tfKernelReleaseCritical

#include <trsocket.h>

void tfKerneReleaseCritical
(
void
);

Function Description
RTOS SPECIFIC

This function is used to end a critical section.

Parameters
None

Returns
Nothing

Programmer’s Reference

5.233

tfKernelSetCritical

#include <trsocket.h>

void tfKernelSetCritical
(
void
);

Function Description
RTOS SPECIFIC

This function is used to begin a Critical section

Parameters
None

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

5.234

tfKernelSheapCreate

#include <trsocket.h>

ttUser32Bit * tfKernelSheapCreate
(
void
);

Function Description
RTOS SPECIFIC

Normally, the Treck simple heap is implemented as a static array. However, you
can dynamically allocate it by defining the macro
TM_DYNAMIC_CREATE_SHEAP in your trsystem.h file, in which case you
implement tfKernelSheapCreate to perform the allocation. The size of the simple
heap allocated by this function must be TM_SHEAP_SIZE, and it must start on a
32-bit address boundary.

Parameters
None

Returns
A pointer to the beginning of the Treck simple heap. This address must be 32-bit
aligned, and must point to a block of memory which is TM_SHEAP_SIZE bytes
in size.

Programmer’s Reference

5.235

tfKernelTaskPostEvent

#include <trsocket.h>

void tfKernelIsrPostEvent
(
ttUserGenericUnionPtr eventPtr
);

Function Description
RTOS SPECIFIC

This function is used to resume waiting tasks that were waiting on this event. It
is called from a task.

Parameters

Parameter Description
eventPtr The event to post on

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

5.236

tfKernelTaskYield

#include <trsocket.h>

void tfKernelTaskYield
(
void
);

Function Description
RTOS SPECIFIC

This function is used to yield the CPU. It is called from a task.

Returns
Nothing

Programmer’s Reference

5.237

tfKernelWarning

#include <trsocket.h>

void tfKernelWarning
(
char * functionName,
char * errorMessage
);

Function Description
RTOS SPECIFIC

This function is used to report a non fatal-warning. The system should continue
normally.

Parameters
Parameter Description
functionName The Null terminated string contain-

ing the function name where the
error occurred

errorMessage The Null terminated string contain-
ing the error message

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

5.238

Compiler Library Replacement Functions

tfMemCpy

#include <trsocket.h>

void tfMemCpy
(
void * destination,
const void * source,
unsigned length
);

Function Description
This function is used to copy data (i.e. memcpy)

Parameters
Parameter Description
destination Beginning of destination
source Beginning of source
length Length of area to copy

Returns
Number of bytes copied

Programmer’s Reference

5.239

tfMemSet

#include <trsocket.h>

void tfMemSet
(
void * buffer,
unsigned char fillCharacter,
unsigned length
);

Function Description
This function is used to fill an area of memory (i.e. set all of the bytes to 0x00).
In versions 2.0 and earlier, the order of the fillCharacter and length parameters
was reversed.

Parameters
Parameter Description
buffer Beginning of area to fill
fillCharacter What to fill the area with
length Length of area to fill

Returns
Number of bytes filled

Turbo Treck Real-Time TCP/IP User’s Manual

5.240

tfQSort

#include <trsocket.h>

void tfQSort
(
void * a,
unsigned int n,
unsigned int es,
ttCmpFuncPtr cmpFuncPtr
);

Function Description
tfQsort sorts the array pointed to by a. There are n elements of size es in this array.
These elements are sorted according to a comparison function, pointed to by
cmpFuncPtr. This function is defined as:

typedef int (* ttCmpFuncPtr)(const void * parmPtr1,
 const void * parmPtr2);

This function should take the two parameters, parmPtr1 and parmPtr2, and should
return 1 if the first element is greater than the second, 0 if they are equal or –1 if the
first element is less than the second.

Parameters

Parameter Description
a Pointer to the array to be sorted
n Number of elements in the above

array
es Size of each element in the array
cmpFuncPtr Pointer to the function used to

compare array elements
Returns

Nothing

Programmer’s Reference

5.241

tfSPrintF

int tfSPrintF
(
char * buffer,
const char* format,
...
);

Function Description
This function writes formatted data to an array using the following format
specifiers:
Examples
call: tfSPrintF(myBuffer, “This is example number %d”, 1);
result: “This is example number 1”
call: tfSPrintf(myBuffer, “This is %s number %d”, “example”, 2);
output: “This is example number 2”

Code Description
%c Print a character
%d Print a signed decimal integer
%e Scientific notation: prints a lower case e
%E Scientific notation: prints an upper case E
%f Decimal floating point
%g Choose between %e or %f depending on which

is shorter
%G Choose between %E or %F depending on which

is shorter
%i Print a signed decimal integer
%n The value to which %n corresponds is a pointer

to a variable representing the number of
characters successfully output.

%o Print an unsigned octal
%p Show a pointer
%s Print a string (up to the first null character

encountered)
%u Print an unsigned decimal integer
%x Print an unsigned hex integer (lowercase)
%X Print an unsigned hex integer (uppercase)
%% Print a percent sign

Turbo Treck Real-Time TCP/IP User’s Manual

5.242

Parameters
Parameter Description
buffer The string to be written
format The string containing the format

specifiers
Returns

A number representing the number of characters put into an array.

Programmer’s Reference

5.243

tfSScanF

int tfSScanF
(
const char* buffer,
const char* format,
...
);

Function Description
This function is used to parse a string; it reads data from buffer into locations
designated by arguments provided by the user.

Code Description
%c Read a character. White space characters are not

read unless %c is used
%d Read a decimal number
%e Read a floating-point number. It can have a + or –

sign. It can also be a series of digits with a
decimal point and an exponent (e or E) followed
by a signed or unsigned integer

%f Read a floating-point number. It can have a + or –
sign. It can also be a series of digits with a
decimal point and an exponent (e or E) followed
by a signed or unsigned integer

%g Read a floating-point number. It can have a + or –
sign. It can also be a series of digits with a
decimal point and an exponent (e or E) followed
by a signed or unsigned integer

%i Read a decimal integer
%n Use an integer number to express the number of

bytes successfully read
%o Read an octal number
%p Read a pointer (platform specific)
%s Read a string
%u Read an unsigned decimal integer
%x Read a hexadecimal number
%[] Read a set of characters

Turbo Treck Real-Time TCP/IP User’s Manual

5.244

Parameters
Parameter Description
buffer The string to be parsed
format The string containing the format

specifiers dictating which type of
data is to be read

Returns
The number of input fields that were both formatted and assigned a value.
If an error occurs, tfSScanF will return End of File (EOF)

Programmer’s Reference

5.245

tfStrCat

int tfStrCat
(
char* stringD,
const char* stringS
);

Function Description
This function takes the content of one string and appends it to another. The
user
of this function must make certain the contents of both strings will fit in the size
allotted for the fist. This function accomplishes this by overwriting the null
character at the end of the first string with the first character in the second.

Parameters
Parameter Description
stringD The string to be appended
strings The string appended to stringD

Returns
stringD

Turbo Treck Real-Time TCP/IP User’s Manual

5.246

tfStrChr

int tfStrChr
(
const char* stringPtr,
int character
);

Function Description
This function searches for the low-ordered byte of an integer in a string.

Parameters
Parameter Description
stringPtr Pointer to the string being searched
character The integer containing the byte for

which tfStrChar is searching

Returns
A pointer to the first match. If there are no matches this function returns a
null pointer.

Programmer’s Reference

5.247

tfStrCmp

int tfStrCmp
(
const char* stringPtr1,
const char* stringPtr2
);

Function Description
This function alphabetically compares two strings.

Parameters
Parameter Description
stringPtr1 A string
stringPtr2 A string

Returns
Value Meaning
Less than Zero stringPtr1 is less than stringPtr2
Zero stringPtr1 is equal to stringPtr2
Greater than Zero stringPtr1 is greater than stringPtr2

Turbo Treck Real-Time TCP/IP User’s Manual

5.248

tfStrCpy

int tfStrCpy
(
char* destinationPtr,
const char* sourcePtr
);

Function Description
This function copies the contents of one array (pointed to by sourceptr) and places
it in the array pointed to by destinationPtr. The array pointed to by destinationptr
must be large enough to hold the contents of the array pointed to by sourcePtr.
If the two arrays overlap, the behavior is undefined.

Parameters
Parameter Description
destinationPtr The array to which data is copied
sourcePtr The array from which data is copied

Returns
destinationPtr

Programmer’s Reference

5.249

tfStrCSpn

int tfStrCSpn
(
char* destinationPtr,
const char* sourcePtr
);

Function Description
This function searches for any characters in sourcePtr that also appear in the
destinationPtr and returns the offset of the first matched character in destinationPtr.

Parameters
Parameter Description
destinationPtr The string to be searched
sourcePtr A list of the characters to be searched

for in destinationPtr

Returns
Offset of the first matched character in destinationPtr

Turbo Treck Real-Time TCP/IP User’s Manual

5.250

tfStrError

int tfStrError
(
int errorcode
);

Function Description
This function returns the error message correlated with errnum.

Parameters
Parameter Description
errorcode An error value

Returns
error message

Programmer’s Reference

5.251

tfStrLen

int tfStrLen
(
const char* strPtr
);

Function Description
This function returns the length of string pointed to by strPtr.

Parameters
Parameter Description
strPtr Pointer to the string

Returns
The length of the string pointed to by strPtr

Turbo Treck Real-Time TCP/IP User’s Manual

5.252

tfStrNCmp

int tfStrNCmp
(
const char* stringPtr1,
const char* stringPtr2,
unsigned int nBytes
);

Function Description
This function alphabetically compares up to nBytes of the two strings.

Parameters
Parameter Description
stringPtr1 A string
stringPtr2 A string
nBytes Number of bytes to compare

Returns
Value Meaning
Less than zero stringPtr1 is less than stringPtr2
Zero stringPtr1 is equal to stringPtr2
Greater than zero stringPtr1 is less than stringPtr2

Programmer’s Reference

5.253

tfStrRChr

int tfStrRChr
(
const char* stringPtr,
int character
);

Function Description
This function looks for the last low-ordered byte of an integer in a string.

Parameters
Parameter Description
stringPtr The string being searched
character The integer containing the byte

being searched for
Returns

A pointer to the last low ordered byte of an integer in a string.
If no match is found it returns a null pointer.

Turbo Treck Real-Time TCP/IP User’s Manual

5.254

tfStrStr

int tfStrStr
(
const char* stringBufferPtr,
const char* stringPtr
);

Function Description
This function looks for the first instance of the substring stringPtr in
stringBufferPtr.

Parameters
Parameter Description
stringBufferPtr The string being searched
stringPtr The substring being searched for

Returns
A pointer to fist instance of the matched substring in stringBufferPtr.
If no match is found it will return null pointer

Programmer’s Reference

5.255

tfStrToL

long tfStrToL
(
const char* nptr,
char ** endptr,
int base
);

Function Description
This function converts a string into an integer.
Example: If a string containing “1234” tfStrToL would return the long integer 1234.

Parameters
Parameter Description
nptr Pointer to the string being converted
endptr Pointer to a pointer in which the

function will return the address of the
first non-convertible character.

base The number system being used. Ex 2
for binary, 10 for decimal, etc.

Returns
A long integer containing the number represented by the string.

Turbo Treck Real-Time TCP/IP User’s Manual

5.256

tfStrToUl

unsigned long tfStrToUl
(
const char* nptr,
char ** endptr,
int base
);

Function Description
This function converts a string into an integer.
Example: If a string containing “1234” tfStrToUl would return the unsigned long
integer 1234.

Parameters
Parameter Description
nptr Pointer to the string being converted
endptr Pointer to a pointer in which the

function will return the address of the
first non-convertible character.

base The number system being used. Ex 2
for binary, 10 for decimal, etc.

Returns
An unsigned long integer containing the number represented by the string.

Programmer’s Reference

5.257

tfVSPrintF

int tfVSPrintF
(
char* buf0,
const char* fmt0,
va_list ap
);

Function Description
This function is similar to tfSPrintF except that it takes a va_list structure as its
third parameter rather than a variable length list of arguments. It writes formatted
data to an array using the following format specifiers:

Code Description
%c Print a character
%d Print a signed decimal integer
%e Scientific notation: prints a lower case e
%E Scientific notation: prints an upper case E
%f Decimal floating point
%g Choose between %e or %f depending on

which is shorter
%G Choose between %E or %F depending on

which is shorter
%i Print a signed decimal integer
%n The value to which %n corresponds is a

pointer to a variable representing the
number of characters successfully output.

%o Print an unsigned octal
%p Show a pointer
%s Print a string (up to the first null character

encountered)
%u Print an unsigned decimal integer
%x Print an unsigned hex integer (lowercase)
%X Print an unsigned hex integer (uppercase)
%% Print a percent sign

Turbo Treck Real-Time TCP/IP User’s Manual

5.258

Parameters

Parameter Description
buf0 The string to be written
fmt0 The string containing the format

specifiers
ap A va_list structure containing the

variables referred to be the format
specifiers

Returns
A number representing the number of characters put into an array.

Programmer’s Reference

5.259

tfVSScanF

int tfVSScanF
(
const char* buffer,
const char* format,
va_list ap
);

Function Description
This function is used to parse a string. This function is similar to tfSScanF
except that it takes a va_list structure as its third parameter rather than a variable
length list of arguments.

Code Description
%c Read a character. White space characters are

not read unless %c is used
%d Read a decimal number
%e Read a floating-point number. It can have a +

or – sign. It can also be a series of digits
with a decimal point and an exponent (e or E)
followed by a signed or unsigned integer

%f Read a floating-point number. It can have a +
or – sign. It can also be a series of digits
with a decimal point and an exponent (e or E)
followed by a signed or unsigned integer

%g Read a floating-point number. It can have a +
or – sign. It can also be a series of digits
with a decimal point and an exponent (e or E)
followed by a signed or unsigned integer

%i Read a decimal integer
%n Use an integer number to express the number

of bytes successfully read
%o Read an octal number
%p Read a pointer (platform specific)
%s Read a string
%u Read an unsigned decimal integer
%x Read a hexadecimal number
%[] Read a set of characters

Turbo Treck Real-Time TCP/IP User’s Manual

5.260

Parameters
Parameter Description
buffer The string to be parsed
format The string containing the format

specifiers dictating which type of
data is to be read

ap A va_list structure containing the
variables referred to be the format
specifiers

Returns
The number of input fields that were both formatted and assigned a value.
If an error occurs, tfVSScanF will return End of File (EOF).

Application Reference

6.1

Application Reference

Turbo Treck Real-Time TCP/IP User’s Manual

6.2

Application Reference

6.3

Application Reference
Function List

PING API
tfPingClose
tfPingGetStatistics
tfPingOpenStart

DNS Resolver
tfDnsInit
tfDnsGetHostAddr
tfDnsGetHostByName
tfDnsGetMailHost
tfDnsGetNextMailHost
tfDnsSetOption
tfDnsSetServer

FTPD API
tfFtpdUserExecute
tfFtpdUserStart
tfFtpdUserStop

FTP
tfFtpAbor
tfFtpAppe
tfFtpCdup
tfFtpClose
tfFtpConnect
tfFtpCwd
tfFtpDele
tfFtpDirList
tfFtpFreeSession
tfFtpGetReplyText
tfFtpHelp
tfFtpLogin
tfFtpMkd
tfFtpNewSession
tfFtpNoop
tfFtpPort
tfFtpPwd
tfFtpQuit
tfFtpRein
tfFtpRename
tfFtpRetr
tfFtpRmd
tfFtpStor
tfFtpTurnPasv
tfFtpSyst
tfFtpType
tfFtpUserExecute

TFTP
tfTftpGet
tfTftpInit
tfTftpPut
tfTftpSetTimeout
tfTftpUserExecute

TFTPD
tfTftpdInit
tfTftpdUserExecute
tfTftpdUserStart
tfTftpdUserStop

File System Interface
tfFSChangeDir
tfFSChangeParentDir
tfFSCloseDir
tfFSCloseFile
tfFSDeleteFile
tfFSGetNextDirEntry
tfFSGetUniqueFileName
tfFSGetWorkingDir
tfFSMakeDir
tfFSOpenDir
tfFSOpenFile
tfFSReadFile
tfFSReadFileRecord
tfFSRemoveDir
tfFSRenameFile
tfFSStructureMount
tfFSSystem
tfFSUserAllowed
tfFSUserLogin
tfFSUserLogout
tfFSWriteFile
tfFSWriteFileRecord

Telnet Daemon
tfTeldClosed
tfTeldIncoming
tfTeldOpened
tfTeldUserClose
tfTeldUserExecute
tfTeldUserSend
tfTeldUserStart
tfTeldUserStop

Turbo Treck Test Suite
tfTestTreck
tfTestUserExecute

Turbo Treck Real-Time TCP/IP User’s Manual

6.4

PING Application Program Interface

Description
Three calls are provided in the PING Application Program Interface. First, the user
calls tfPingOpenStart. This opens an ICMP socket and sends periodic PING echo
request packets. tfPingOpenStart is passed a pointer to a character array contain-
ing a dotted decimal IP address representation of the remote host, the interval in
seconds between PING echo requests, the user data length of the PING echo
requests, and a pointer to a call back function to be called upon reception of a PING
echo reply, or a network ICMP error message. If successful, tfPingOpenStart
returns a socket descriptor.

The system will keep sending PING echo requests from the timer until the user calls
tfPingClose, passing the socket descriptor as returned by tfPingOpenStart as the
parameter. Prior to calling tfPingClose, the user can call tfPingGetStatistics to
retrieve results and statistics of the PING connection such as number of packets
transmitted, number of packets received, round trip time of the last PING echo
request, error code as given by a received network ICMP error message, etc.. The
user passes the socket descriptor returned by tfPingOpenStart as the first param-
eter to tfPingGetStatistics, and a pointer to a ttPingInfo structure as the second
parameter, where the system will copy the results and statistics of the PING connec-
tion if the tfPingGetStatistics returns with no error. The user can be notified of
incoming PING echo replies or incoming ICMP error messages if he specifies a non-
null call back function pointer as the last parameter to tfPingOpenStart. In that
case, the call back function is called every time a PING echo reply or an ICMP error
message is received. The call back function takes one parameter- the socket de-
scriptor as returned by the tfPingOpenStart. The user can then retrieve the PING
connection information by calling tfPingGetStatistics.

Application Reference

6.5

tfPingClose

#include <trsocket.h>

int tfPingClose
(
int socketDescriptor
);

Function Description
This function stops the sending of any PING echo requests and closes the ICMP
socket that had been opened via tfPingOpenStart.

Parameters
Parameter Description
socketDescriptor An ICMP PING socket descriptor as

returned by tfPingOpenStart
Returns

Value Meaning
 0 Success
-1 An error occurred

If tfPingClose fails, the associated error code can be retrieved using
tfGetSocketError (socketDescriptor):

TM_EBADF socketDescriptor is not a valid
descriptor

Turbo Treck Real-Time TCP/IP User’s Manual

6.6

tfPingGetStatistics

#include <trsocket.h>

int tfPingGetStatistics
(
int socketDescriptor,
ttPingInfoPtr pingInfoPtr
);

Function Description
This function gets Ping statistics in the ttPingInfo structure that pingInfoPtr points
to. socketDescriptor should match the socket descriptor returned by a call to
tfPingOpenStart. pingInfoPtr must point to a ttPingInfo structure allocated by the
user.

Parameters
Parameter Description
socketDescriptor The socket descriptor as returned

by a previous call to
tfPingOpenStart.

pingInfoPtr The pointer to an empty structure
where the results of the PING
connection will be copied upon
success of the call. (See below for
details.)

ttPingInfo Data structure:

Field data type Description
pgiTransmitted unsigned long Number of transmitted PING echo

request packets so far
pgiReceived unsigned long Number of received PING echo

reply packets so far (not including
duplicates)

pgiDuplicated unsigned long Number of duplicated received
PING echo reply packets so far.

pgiLastRtt unsigned long Round trip time in milliseconds of
the last PING request/reply.

pgiMaxRtt unsigned long Maximum round trip time in
milliseconds of the PING request/
reply packets.

Application Reference

6.7

pgiMinRtt unsigned long Minimum round trip time in
milliseconds of the PING request/
reply packets.

pgiAvrRtt unsigned long Average round trip time in
milliseconds of the PING request/
reply packets.

pgiSumRtt unsigned long Sum of all round trip times in milli-
seconds of the PING request/reply
packets.

pgiSendErrorCode int PING send request error code if any.
pgiRecvErrorCode int PING recv error code if any

(including ICMP error from the
network).

Returns
Value Meaning
 0 Success
-1 An error occurred

If tfPingGetStatistics fails, the associated error code can be retrieved using
tfGetSocketError (socketDescriptor):

TM_EBADF socketDescriptor is not a valid
descriptor.

TM_EINVAL pingInfoPtr is a NULL pointer
TM_EINVAL socketDescriptor was not opened

with tfPingOpenStart

Turbo Treck Real-Time TCP/IP User’s Manual

6.8

tfPingOpenStart

#include <trsocket.h>

int tfPingOpenStart
(
char * remoteHostNamePtr,
int pingInterval,
int pingDataLength,
ttPingCBFuncPtr pingUserCBFuncPtr
);

Function Description
This function opens an ICMP socket and starts sending PING echo requests to a
remote host as specified by the remoteHostName parameter. PING echo requests
are sent every pingInterval seconds. The PING length (not including IP and ICMP
headers) is given by the pingDataLength parameter. If the pingUserCBFuncPtr
parameter is non-null, the function it points to is called for each received PING echo
reply or ICMP error message, with the socket descriptor returned by tfPingOpenStart
passed as a parameter. To get the PING connection results and statistics, the user
must call tfPingGetStatistics. To stop the system from sending PING echo re-
quests and to close the ICMP socket, the user must call tfPingClose.

Parameters
Parameter Description
remoteHostNamePtr Pointer to character array contain-

ing a dotted decimal IP address.
pingInterval Interval in seconds between PING

echo requests. If set to zero,
defaults to 1 second.

pingDataLength User Data length of the PING echo
request. If set to zero, defaults to 56
bytes. If set to a value between 1,
and 3, defaults to 4 bytes.

pingUserCBFuncPtr Pointer to a user function to be
called upon receiving a network
PING echo reply, or an ICMP error
message, with the socket descriptor
as returned by tfPingOpenStart
passed as a parameter. Can be set to
null function pointer if the user
does not wish to be notified of
incoming network traffic.

Application Reference

6.9

Returns
New ICMP Socket Descriptor or TM_SOCKET_ERROR (-1) on error

If tfPingOpenStart fails, the errorCode can be retrieved with tfGetSocketError
(TM_SOCKET_ERROR):

TM_EINVAL remoteHostNamePtr was a null
pointer

TM_EINVAL pingInterval was negative
TM_EINVAL pingDataLength was negative of

bigger than 65595, maximum value
allowed by the IP protocol.

TM_ENOBUFS There was insufficient user memory
available to complete the operation.

TM_EMSGSIZE pingDataLength exceeds socket
send queue limit, or
pingDataLength exceeds the IP
MTU, and fragmentation is not
allowed.

TM_EHOSTUNREACH No route to remote host

Example with a non null function pointer

#include <trsocket.h>

void tfPingUserCB (int socketDescriptor);

..
socketDescriptor = tfPingOpenStart (“192.168.0.2”, 0, 0,
tfPingUserCB);

Example with a null function pointer
#include <trsocket.h>

..
socketDescriptor =
 tfPingOpenStart (“127.0.0.1”,
 0,
 0,
ttPingCBFuncPtr)0);

Turbo Treck Real-Time TCP/IP User’s Manual

6.10

DNS Resolver
Description
The DNS Resolver allows a user to translate a hostname to an IP address, an IP
address to a hostname, and to retrieve information about a host’s mail exchang-
ers (which is necessary to send SMTP e-mail). The user API consists of three
functions that are called before a DNS operation is performed and then three
functions to perform these operations.

Initialization functions
tfDnsInit
Initializes the DNS service and should be called before any other API call is
made.

tfDnsSetServer
Specifies the DNS server(s) to retrieve hostname information from.

tfDnsSetOption
Sets various options regarding the operation of DNS: timeout lengths, number of
retries, etc.

User Interface
tfDnsGetHostByName
Translates the given hostname to its corresponding IP address (e.g., “elmic.com”
translates to 208.229.201.1).

tfDnsGetHostByAddr
Translates the given IP address to its corresponding hostname (also called a
reverse lookup).

tfDnsGetMailHost, tfDnsGetNextMailHost
Returns the first MX record in the list (tfDnsGetMailHost) and then retrieves any
records that follow (tfDnsGetNextMailHost). Please see below for more
information on using MX records.

Any of the user interface calls may return an error from theTurbo Treck stack or
from the DNS server. The errors from the Turbo Treck stack are the normal
socket errors (e.g., TM_ENOMEM, TM_EHOSTUNREACH). Errors returned
from the DNS server are outlined below (derived from RFC-1035):

Application Reference

6.11

TM_DNS_EFORMAT Format error – The name server was
unable to interpret the query.

TM_DNS_ESERVER Server Failure – The name server
was unable to process this query
due to a problem with the name
server.

TM_DNS_ENAME_ERROR Name Error – Meaningful only for
responses from an authoritative
name server, this code signifies that
the domain name referenced in the
query does not exist.

TM_DNS_ENOT_IMPLEM Not Implemented – The name server
does not support the requested
kind of query.

TM_DNS_EREFUSED Refused – The name server refuses
to perform the specified operation
for policy reasons. For example, a
name server may not wish to
provide the information to the
particular requester, or a name
server may not wish to perform a
particular operation
(e.g., zone transfer) for particular
data.

TM_DNS_EANSWER No answer received from name
server (i.e., response packet
received, but it did not contain the
answer to our query).

Non-Blocking Mode
The call to perform a DNS function will simply block until the operation is
complete (or an error is received). However, with non-blocking mode it is
necessary to poll the DNS Resolver to determine if the operation has completed.
If an operation is still in progress, the call will return TM_EWOULDBLOCK. If an
error code other than TM_EWOULDBLOCK is received, the operation has
completed.

Mail Exchanger (MX) Records
Each hostname contains a list of machines that are willing to accept mail destined
for that hostname. This is necessary should one of the machines be unable to

Turbo Treck Real-Time TCP/IP User’s Manual

6.12

receive mail. Each one of the hosts in this list contains a preference value that
indicates the order that these hosts should be used. An e-mail program should
first attempt delivery to the hostname with the lowest preference value, and if
unable to connect, to attempt delivery to the hostname with the next highest
preference. For instance, “elmic.com” may have the following MX entries:

mail1.elmic.com 10 208.229.201.1
mail2.elmic.com 20 208.229.201.2
mail3.elmic.com 30 208.229.201.3

Mail should first be sent to mail1.treck.com. If that fails it should be sent
to mail2.treck.com and so on. This behavior can be emulated with the
Treck resolver by first calling tfDnsGetMailHost and then repeatedly calling
tfDnsGetNextMailHost, which will return TM_EANSWER when no more records
are available. With each call to tfDnsGetNextMailHost, the IP address and
preference value of the previous lookup must be included. For instance, the
following code retrieves all three entries in the example above:

unsigned short mxPref1, mxPref2, mxPref3;
ttUserIpAddress ipAddress1, ipAddress2, ipAddress3;

/* Get the first MX record (mail1.elmic.com) */
errorCode = tfDnsGetMailHost(“treck.com”,

 &ipAddress1,
 &mxPref1);

/* Get the second MX record (mail2.elmic.com) */
errorCode = tfDnsGetNextMailHost(“elmic.com”,

 ipAddress1,
 mxPref1,
 &ipAddress2,

 &mxPref2);
/*
 * Get the third MX record (mail3.elmic.com)
 * If tfDnsGetNextMailHost were called with ipAddress3
 * and mxPref33, it would return TM_EANSWER.
 */
errorCode = tfDnsGetNextMailHost(“elmic.com”,

 ipAddress2,
 mxPref3,
 &ipAddress3,

 &mxPref3);

Application Reference

6.13

tfDnsInit

int tfDnsInit
(
int blockingMode
);

Function Description
This function initializes the DNS resolver service. This should be called once
and only once when the system is started.

Parameters
Parameter Description
blockingMode Specifies whether the resolver

should operate in blocking or non-
blocking mode
(TM_BLOCKING_ON or
TM_BLOCKING_OFF)

Returns
Value Meaning
TM_EINVAL blockingMode not set to either

TM_BLOCKING_ON or
TM_BLOCKING_OFF

TM_EALREADY The DNS resolver has already been
started.

TM_ENOERROR Resolver started successfully.

Turbo Treck Real-Time TCP/IP User’s Manual

6.14

tfDnsGetHostAddr

int tfDnsGetHostAddr
(
ttUserIpAddress serverIpAddr,
char * hostnameStr,
int hostnameStrLength
);

Function Description
This function retrieves the hostname associated with the given IP address (a
“reverse DNS lookup”).

Parameters
Parameter Description
serverIpAddr IP address to retrieve the hostname

for.
hostnameStr Buffer to place the retrieved

hostname in.
hostnameStrLength Size of the above buffer.

Returns
Value Meaning
TM_EINVAL Invalid host name string or IP

address pointer.
TM_EWOULDBLOCK DNS lookup in progress. The user

should continue to call
tfDnsGetHostAddr with the same
parameters until it returns a value
other than TM_EWOULDBLOCK.
Only returned when operating in
non-blocking mode.

TM_ENOERROR DNS lookup successful, hostname
stored in hostnameStr, length
stored in *hostnameStrLength.

Application Reference

6.15

tfDnsGetHostByName

int tfDnsGetHostName
(
const char * hostnameStr,
ttUserIpAddressPtr ipAddressPtr
);

Function Description
This function retrieves the IP address associated with the given hostname.

Parameters
Parameter Description
hostnameStr Hostname to resolve.
ipAddressPtr Set to the IP address of the host.

Returns
Value Meaning
TM_EINVAL Invalid host name string or IP

address pointer.
TM_EWOULDBLOCK DNS lookup in progress. The user

should continue to call
tfDnsGetHostName with the same
parameters until it returns a value
other than TM_EWOULDBLOCK.
Only returned in non-blocking
mode.

TM_ENOERROR DNS lookup successful, IP address
stored in *ipAddressPtr.

Turbo Treck Real-Time TCP/IP User’s Manual

6.16

tfDnsGetMailHost

int tfDnsGetMailHost
(
const char * hostnameStr,
ttUserIpAddressPtr ipAddressPtr,
unsigned short * mxPrefPtr
);

Function Description
This function retrieves the IP address of the first MX record for this hostname.

Parameters
Parameter Description
hostnameStr Hostname to resolve.
ipAddressPtr Set to the IP address of the mail

host.
mxPrefPtr Set to the preference value of this

mail host.

Returns
Value Meaning
TM_EINVAL Invalid host name string or IP

address pointer.
TM_EWOULDBLOCK DNS lookup in progress. The user

should continue to call
tfDnsGetHostName with the same
parameters until it returns a value
other than TM_EWOULDBLOCK.

TM_ENOERROR DNS lookup successful, IP address
stored in *ipAddressPtr.

Application Reference

6.17

tfDnsGetNextMailHost

int tfDnsGetNextMailHost
(
const char * hostnameStr,
ttUserIpAddress lastIpAddress,
unsigned short lastPreference,
ttUserIpAddressPtr ipAddressPtr,
unsigned short * mxPrefPtr
);

Function Description
This function returns the IP address for the next mail exchanger for this
hostname. The record that immediately follows the record for lastIpAddress/
lastPreference will be retrieved.

Parameters
Parameter Description
hostnameStr Hostname to resolve.
lastIpAddress IP address of the last retrieved mail

host for this host.
lastPreference Preference of the last retrieved mail

host for this host.
ipAddressPtr Set to the IP address of the host.

Returns
Value Meaning
TM_EINVAL Invalid host name string or IP

address pointer.
TM_EWOULDBLOCK DNS lookup in progress. The user

should continue to call
tfDnsGetHostName with the same
parameters until it returns a value
other than TM_EWOULDBLOCK.

TM_ENOERROR DNS lookup successful, IP address
stored in *ipAddressPtr.

Turbo Treck Real-Time TCP/IP User’s Manual

6.18

tfDnsSetOption

int tfDnsSetOption
(
int optionType,
int optionValue
);

Function Description
This function sets various DNS options which are outlined below:

Option type Description
TM_DNS_OPTION_RETRIES Maximum number of times of

retransmit a DNS request.
TM_DNS_OPTION_CACHE_SIZE Maximum number of entries in the

DNS cache. Must be greater than
zero.

TM_DNS_OPTION_TIMEOUT Amount of time (in seconds) to wait
before retransmitting a DNS
request.

Parameters
Parameter Description
optionType See above
optionValue Value for above option.

Returns
Value Meaning
TM_EINVAL Invalid value for above option.
TM_ENOPROTOOPT Option not supported (not in above

list).
TM_ENOERROR Option set successfully.

Application Reference

6.19

tfDnsSetServer

int tfDnsSetServer
(
ttUserIpAddress serverIpAddr,
int serverNumber
);

Function Description
This function sets the address of the primary and secondary DNS server. To set
the primary DNS server serverNumber should be set to
TM_DNS_PRI_SERVER; for the secondary server it should be set to
TM_DNS_SEC_SERVER. To remove a previously set entry, set serverIpAddr to
zero.

Parameters
Parameter Description
serverIpAddr IP address of the DNS server

serverNumber Primary or secondary server

Returns
Value Meaning
TM_EINVAL serverNumber is not

TM_DNS_PRI_SERVER or
TM_DNS_SEC_SERVER.

TM_ENOERROR DNS server set successfully.

Turbo Treck Real-Time TCP/IP User’s Manual

6.20

FTPD Application Program Interface
Description
The FTPD Application Program Interface allows the user to run an FTP server. It
consists of two parts:

User interface
The user interface allows the user to start/stop the FTP server to allow/stop
remote FTP clients to connect and exchange files with the host.

File system interface
The file system interface allows the FTP server to interact with the operating
system’s file system to store and retrieve files for example.

User Interface
Three calls are provided in the FTPD User Interface.

1. tfFtpdUserStart
The user calls tfFtpdUserStart, to open an FTP server socket and start listening
for incoming connections. tfFtpdUserStart can be either blocking or non
blocking, as specified by its last parameter.

Blocking Mode
In blocking mode, tfFtpdUserStart should be called from a task. tfFtpdUserStart
will not return unless an error occurs, and will block and wait for incoming
connections, and execute the FTP server code in the context of the calling
task. Choose the blocking mode, if you are using an RTOS/Kernel.

Non-Blocking Mode
In non-blocking mode, tfFtpdUserStart will return immediately after listening
for incoming connections. It is the user’s responsibility to then call
tfFtpdUserExecute periodically to execute the FTP server code. Choose the
non-blocking mode if you do not have an RTOS/Kernel.

2. tfFtpdUserExecute
If the user had called tfFtpdUserStart in non-blocking mode, then the user
needs to call tfFtpdUserExecute periodically. If the user had called
tfFtpdUserStart in blocking mode, then there is no need to call
tfFtpdUserExecute.

3. tfFtpdUserStop
The user calls tfFtpdUserStop to close the FTP server socket and kill all existing
FTP connections.

Application Reference

6.21

File System Interface from the FTP server
Entry points from the FTP server to the file system:

tfFSChangeDir Change current working directory.
tfFSChangeParentDir Change current working directory to

parent Directory.
tfFSCloseDir Close a directory that we had opened

earlier.
tfFSCloseFile Close a file.
tfFSDeleteFile Delete a file.
tfFSGetNextDirEntry Get the next directory entry in the

directory open with tfFSOpenDir,
either a long listing of the directory
entry (including volumes, sub
directories, and file names), or a short
listing of the directory (file name
only), depending on how the direc-
tory was open.

tfFSGetUniqueFileName Given a file name, return a unique file
name in the current directory (i.e, if
the file name already exists, make up a
new name that is unique in the current
directory.)

tfFSGetWorkingDir Get user working directory.
tfFSMakeDir Create specified directory.
tfFSOpenDir Open specified directory, or directory

corresponding to a specified pattern
to allow getting a long or short listing
of the directory or of the directory
entries matching the specified pattern.

tfFSOpenFile Open a file (creating it if it does not
exist), for read, write, or append,
specifying type (ASCII, or binary),
structure (stream, or record).

tfFSReadFile Read n bytes from a file into a buffer.
tfFSReadFileRecord Read a record from a file up to n

bytes. Indicates whether EOR has
been reached.

tfFSRemoveDir Remove specified directory

Turbo Treck Real-Time TCP/IP User’s Manual

6.22

tfFSRenameFile Rename a file.
tfFSStructureMount Mount the user to a new file system

data structure.
tfFSSystem Return the system name.
tfFSUserAllowed Indicates whether a specified user is

allowed on the system.
tfFSUserLogin Login a user if password is valid.
tfFSUserLogout Logout a user.
tfFSWriteFile Write some bytes from a buffer to a

file.
tfFSWriteFileRecord Write a record from a buffer to a file.

Note: File system calls for the FTP server can be found in the File System
Section of this manual.

Application Reference

6.23

tfFtpdUserExecute

#include <trsocket.h>

int tfFtpdUserExecute
(
void
);

Function description
This function executes the Ftp server main loop. This call is valid only if
tfFtpdUserStart has been called in non-blocking mode, and tfFtpdUserExecute is
not currently executing.

Parameters
None

Returns
Value Meaning
0 Success
TM_EPERM Ftp server currently executing, or

has not been started, or has been
stopped.

Turbo Treck Real-Time TCP/IP User’s Manual

6.24

tfFtpdUserStart

#include <trsocket.h>

int tfFtpdUserStart
(
int fileFlags,
int maxConnections,
int maxBackLog,
int idleTimeout,
int blockingState
);

Function Description
This function opens an FTP server socket and starts listening for incoming
connections. tfFtpdUserStart can be either blocking or non-blocking as speci-
fied by its blockingState parameter.

Blocking Mode
In blocking mode, tfFtpdUserStart should be called from a task. tfFtpdUserStart
will not return unless an error occurs. It will block and wait for incoming
connections, and execute the FTP server code in the context of the calling task.
Choose the blocking mode if you are using an RTOS/Kernel.

Non-Blocking Mode
In non-blocking mode, tfFtpdUserStart will return immediately after listening for
incoming connections. It is the user’s responsibility to then call tfFtpdUserExecute
periodically to execute the FTP server code. Choose the non-blocking mode if
you do not have an RTOS/Kernel.

Application Reference

6.25

Parameters
Parameter Description
fileFlags Indicates which FTP file commands are

supported by the file system. It is the
result of ORing together the flags
(described below) corresponding to the
FTP commands supported by the file
system.

maxConnections Maximum number of concurrent
accepted incoming FTP connections
allowed. If zero, then the FTP server will
accept as many connections as there are
available sockets.

maxBackLog Maximum number of concurrent pending
(before being accepted) incoming FTP
connections allowed.

idleTimeout Amount of time in seconds that a
connection can sit idle before the server
closes that connection. The idle
Timeout value cannot be less than 300
seconds (5 minutes).

blockingState TM_BLOCKING_ON for blocking mode,
TM_BLOCKING_OFF for non-blocking
mode.

File system flags:
File system flags Description
TM_FS_CWD_FLAG Supports change working directory.
TM_ FS_SMNT_FLAG Supports structure mount.
TM_ FS_RETR_FLAG Supports reading from a file.
TM_ FS_STOR_FLAG Supports writing to a file.
TM_ FS_STORU_FLAG Supports writing to a file, making up a

new name, if the file name already exists.
TM_ FS_APPEND_FLAG Supports append to a file.
TM_ FS_RENAME_FLAG Supports renaming of file name.
TM_FS_DELETE_FLAG Supports deletion of file.
TM_ FS_RMD_FLAG Supports removing directory.
TM_ FS_MKD_FLAG Supports making directory.
TM_ FS_PWD_FLAG Supports retrieving the current working

directory.
TM_ FS_LIST_FLAG Supports long listing of directory (file

names, volume, and directories)

Turbo Treck Real-Time TCP/IP User’s Manual

6.26

TM_ FS_NLST _FLAG Supports short listing of directory (file
names only)

TM_FS_CR_LF_FLAG The file system end of line is CR, LF
TM_FS_RECORD_FLAG The file system supports record

structures. If this flag is set the FTP
server will interpret the FTP record
bytes if the FTP client transfers data
with record structure.

TM_ FS_ALLCMND_FLAG ORing of all above command flags.
Returns

Value Meaning
0 Success
TM_EINVAL Incorrect file flag specified.
TM_EINVAL maxConnections is either negative, or if

non zero exceeds or equals the current
number of available FTP connections.*

TM_EINVAL maxBackLog is either negative or null, or
exceeds or equals the current number of
available FTP connections.*

TM_EINVAL The idle timeout is less than 300 seconds.
TM_EINVAL blockingState is neither

TM_BLOCKING_ON, nor
TM_BLOCKING_OFF.

TM_EALREADY tfFtpdUserStart has already been called.
TM_EMFILE No more socket available to open the

FTPD listening socket.
TM_ENOBUFS Insufficient user memory available to com-

plete the operation.
TM_EADDRINUSE The FTP server port is already in use.
TM_ENOMEM Could not obtain a counting semaphore

to be used for blocking the FTP server
(blocking mode only).

*The number of available connections is computed by figuring out the number of
unused sockets in the system, subtracting one for the FTP listening socket, one
for a transient listening socket for a passive data connection, one to send a 421
reply error message when we reach the maximum number of available connec-
tions, and dividing by 2 to allow for 2 sockets (one control socket, and one data
socket) per connection:
(numberUnusedSockets – 3) / 2

Application Reference

6.27

tfFtpdUserStop

#include <trsocket.h>

int tfFtpdUserStop
(
void
);

Function description

This function stops execution of the FTP server, by means of closing the listening
socket and killing all existing connections.

Parameters
None

Returns
Value Meaning
0 Success
TM_EALREADY The FTP server has already been

stopped.

Turbo Treck Real-Time TCP/IP User’s Manual

6.28

FTP Client Application Program Interface
Description
The FTP Client Application Program Interface allows the user to interact with a
remote FTP server: sending and receiving data and performing various file
maintenance functions on the remote filesystem. It consists primarily of two
parts:

User interface: The user interface allows the user
to send commands to the remote
FTP server.

File system interface: The file system interface allows the
FTP client to interact with the
operating system’s file system to
store and retrieve files for example.

User Interface
There are two types of calls provided in the FTP Client User Interface. The first
of these is to create and end an FTP session. A session can be composed of
multiple consecutive connects to various servers. These calls include
tfFtpNewSession and tfFtpFreeSession. A session can be called in either
blocking mode or non-blocking mode.

Blocking Mode
In this mode, each FTP command will return only once the operation has
completed and will block until completed. Choose this mode if you are using
an RTOS/Kernel.

Non-Blocking Mode
In this mode, each FTP command returns immediately after beginning the opera-
tion. After each initial command is made, it is necessary for the user to call
tfFtpUserExecute until the command has completed, which is indicated by
tfFtpUserExecute returning a value other than TM_EWOULDBLOCK.

The next type of call is to send various commands to the FTP server. These
commands perform various file operations such as send or receive, delete and
create directory. These calls are composed of routines such as tfFtpConnect,
tfFtpStor and tfFtpDirList.

As an example of the FTP client user interface, suppose we have an embedded
device that wishes to upload a log file to a main server, and also to retrieve the
most recent configuration settings. See the example code that would perform
these functions on the following page.

Application Reference

6.29

ttUserFtpHandle ftpHandle;
int errorCode;

/*
 * Create a new FTP client session, which includes
 * logging into the local filesystem.
 */
ftpHandle = tfFtpNewSession(0,

 TM_BLOCKING_ON,
 “fsusername”,
 “fspassword”);

/* Connect to the FTP server */
errorCode = tfFtpConnect(ftpHandle,”10.129.5.10”);

/* Login to the server */
errorCode = tfFtpLogin(ftpHandle,

 “ftpuser”,
 “ftppass”,
 “ftpacct”);

/* Transmit daily log file to server */
errorCode = tfFtpStor(ftpHandle, 0,

 “/home/treck/100999.log”,
 “logfile”);

/*
* Retrieve most recent configuration file from
* server.
*/
errorCode = tfFtpRetr(ftpHandle, 0,

 “/home/treck/device.cfg”,
 “configfile”);

/* Close FTP connection */
errorCode = tfFtpQuit(ftpHandle);

/* End FTP session */
errorCode = tfFtpFreeSession(ftpHandle);

Turbo Treck Real-Time TCP/IP User’s Manual

6.30

File System Interface
The user must provide this interface to the file system. These functions, outlined
below, allow the FTP client to access the local file system. This interface is a
subset of that required by the FTP server (FTPD) and the same routines may be
used for both the FTP client and server.

Entry points from the FTP client to the file system:
tfFSCloseDir Close a directory that we had

opened earlier
tfFSCloseFile Close a file
tfFSOpenDir Open specified directory, or

directory corresponding to a
specified pattern to allow getting a
long or short listing of the directory
or of the directory entries matching
the specified pattern

tfFSOpenFile Open a file (creating it if it does not
exist), for read, write or append,
specifying type (ascii, or binary),
structure (stream, or record)

tfFSReadFile Read n bytes from a file into a
buffer

tfFSUserLogin Login a user if password is valid.
tfFSUserLogout Logout a user
tfFSWriteFile Write some bytes from a buffer to a

file

Note: File system calls for the FTP client can be found in the File System
Section of this manual.

Application Reference

6.31

FTP Client API Summary
tfFtpNewSession Creates a new FTP session
tfFtpFreeSession Frees a FTP session
tfFtpClose Closes a FTP connection; used if tfFtpQuit

cannot close the connection properly.
tfFtpConnect Connects to a remote FTP server
tfFtpLogin Log on and authenticate to a FTP server
tfFtpCwd Changes current remote directory
tfFtpCdup Changes to the current directory’s parent

directory.
tfFtpQuit Ends current FTP connection.
tfFtpRein Resets current FTP connection
tfFtpType Sets the current transfer type (ASCII or binary)
tfFtpRetr Retrieves a file from the remote file system.
tfFtpStor Stores a file on the remote file system.
tfFtpAppe Appends a file to a file on the remote file

system.
tfFtpRename Rename a remote file
tfFtpAbor Aborts the transfer in progress.
tfFtpDele Deletes a remote file
tfFtpRmd Removes a remote directory
tfFtpMkd Creates a directory
tfFtpPwd Retrieves the present working directory
tfFtpDirList Retrieves a directory listing
tfFtpSyst Returns information about the system hosting

the remote file system
tfFtpHelp Retrieves help from the FTP server about a

command
tfFtpMode Sets the FTP transfer mode.
tfFtpNoop Does nothing; used to keep an idle connection

open
 tfFtpPort Sets the port used for incoming data connec-

tions
tfFtpGetReplyText Returns the full text reply from the last ex-

ecuted command
tfFtpUserExecute Called only in non-blocking mode. Should be

called periodically to allow the FTP client to
continue to process requests.

Turbo Treck Real-Time TCP/IP User’s Manual

6.32

Return Codes
All of the functions in the FTP Client API return standard error codes. In cases
where the call itself succeeded, but the FTP server returned an error, a different, but
mutually exclusive, set of error codes are used. These constants are included with
each of the user interface calls below and all begin with TM_FTP. For further
information on the meaning of these codes, please see RFC 640.

Application Reference

6.33

tfFtpAbor

#include <trsocket.h>

int tfFtpAbor
(
ttUserFtpHandle ftpSessionPtr
);

Function description
This function aborts the current file transfer in process.

Parameters
Parameter Description
ftpSessionPtr FTP session handle

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.
TM_EACCES Previous command did not com-

plete.
TM_ENOTCONN The user is not currently connected

to a FTP server.
TM_ENOTLOGIN User is not currently logged in.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_NOCMD Command not implemented
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection.

Turbo Treck Real-Time TCP/IP User’s Manual

6.34

tfFtpAppe

#include <trsocket.h>

int tfFtpRetr
(
ttUserFtpHandle ftpUserHandleA,
ttUserFtpHandle ftpUserHandleB,
char TM_FAR * fromFileNamePtr,
char TM_FAR * toFileNamePtr
);

Function description
This function is used to append data to a file on remote FTP server (correspond-
ing to ftpUserHandleA). This function is implemented for both passive mode and
normal mode, and also works with both one FTP server model and two FTP
servers model.

• One server model:
If the ftpUserHandleB parameter is NULL, then the one-server
model is used, and the operation could be either in server active
mode or server passive mode. By default the server is in active
mode. The user needs to call tfFtpTurnPasv with the
TM_FTP_PASSIVE_MODE_ON flag to turn the server in passive
mode.

• Two-server model:
If the ftpUserHandleB parameter is non null, then the two-server
model is used, and the first session should be in passive mode, and
the second session should be in active mode. The user needs to
call tfFtpTurnPasv, passing the ftpUserHandleA parameter, and the
TM_FTP_PASSIVE_MODE_ON.

Parameters
Parameter Description
ftpUserHandleA The user handle of main FTP

session will be operated on.
ftpUserHandleB The user handle of the 2nd FTP

session for two FTP server model.
fromFileNamePtr Pointer to source file name string
toFileNamePtr Pointer to destination file name

string.

Application Reference

6.35

Returns
Value Meaning
TM_EWOULDBLOCK The call is non blocking and did not

complete.
TM_EINVAL Invalid ftpSessionPtr or bad filename.
TM_EACCES Previous command has not finished
TM_ENOTLOGIN Command requires user to be loggedin,

and user is not.
TM_ENOTCONN Command requires connection, and user

is not connected
TM_EOPNOTSUPP Command not supported by the user
TM_ENOERROR No error (Success.)
TM_FTP_NAVAIL Requested action not taken: file

unavailable.
TM_FTP_NOCMD Command not implemented
TM_FTP_XFERSTART Data connection already open; transfer

started
TM_FTP_FILEOKAY File status okay; about to open data

connection.
TM_FTP_DATAOPEN Can’t open data connection
TM_FTP_XFERABOR Connection trouble, closed; transfer

aborted.
TM_FTP_LOCALERR Requested action aborted: local error in

processing
TM_FTP_EXSPACE Requested file action aborted: exceed

storage allocation
TM_FTP_NOSPACE Request action not taken: insufficient

storage space in system.
TM_FTP_FILENAVAIL Requested file action not taken: file

unavailable.
TM_FTP_FILENAME Requested action not taken: file name

not allowed.
TM_FTP_SYNTAXCMD Syntax error, command unrecognized
TM_FTP_SYNTAXARG Syntax error in parameters or arguments
TM_FTP_NOCMDPARAM Command not implemented for that

parameter.
TM_FTP_SERVNAVAIL Service not available, closing TELNET

connection.
TM_FTP_NOTLOGIN Not logged in.

Turbo Treck Real-Time TCP/IP User’s Manual

6.36

tfFtpCdup

#include <trsocket.h>

int tfFtpCdup
(
ttUserFtpHandle ftpSessionPtr
);

Function description
Changes directory on the remote file system to the current directory’s parent directory.

Parameters
Parameter Description
ftpSessionPtr FTP session handle

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.
TM_EACCES Previous command did not com-

plete.
TM_ENOTCONN The user is not currently connected

to a FTP server.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_NOCMD Command not implemented
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection
TM_FTP_NOTLOGIN Not logged in
TM_FTP_NAVAIL Requested action not taken: file

unavailable
TM_FTP_NOCMD Command not implemented

Application Reference

6.37

tfFtpClose

#include <trsocket.h>

int tfFtpClose
(
ttUserFtpHandle ftpSessionPtr
);

Function description
This function closes an FTP client socket, without sending a QUIT command.
Normally, an FTP connection should be closed with the tfFtpQuit call. However, if
the connection or the call to tfFtpQuit fails, this call may be used.

Parameters
Parameter Description
ftpSessionPtr FTP session handle

Returns
Value Meaning
TM_ENOERROR Success
TM_EINVAL Invalid FTP session pointer

Turbo Treck Real-Time TCP/IP User’s Manual

6.38

tfFtpConnect

#include <trsocket.h>

int tfFtpConnect
(
ttUserFtpHandle ftpSessionPtr,
char * ipAddressPtr
);

Function description
This function attempts to connect to a remote FTP server.

Parameters
Parameter Description
ftpSessionPtr FTP session handle
ipAddressPtr String specifying the IP address of

the remote FTP server.
Returns

Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.

TM_EALREADY Command in progress (previous call
did not yet finish)

TM_EACCES Trying to connect to a different FTP
server with disconnecting from
current server.

TM_EINVAL Invalid FTP session pointer
TM_FTP_SERVREADY Service ready in n minutes (for exact

time, use tfFtpGetReplyText to
retrieve full reply text)

TM_FTP_SERVNAVAIL Service not available, closing
TELNET connection

Application Reference

6.39

tfFtpCwd

#include <trsocket.h>

int tfFtpCwd
(
ttUserFtpHandle ftpSessionPtr,
char * pathNamePtr
);

Function description
Changes directory on the remote file system.

Parameters

Parameter Description
ftpSessionPtr FTP session handle
pathNamePtr New directory name

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.

TM_EACCES Previous command did not com-
plete.

TM_ENOTCONN The user is not currently connected
to a FTP server

TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_NOCMD Command not implemented
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection
TM_FTP_NOTLOGIN Not logged in
TM_FTP_NAVAIL Requested action not taken: file

unavailable
TM_FTP_NOCMD Command not implemented

Turbo Treck Real-Time TCP/IP User’s Manual

6.40

tfFtpDele

#include <trsocket.h>

 int tfFtpDele
(
ttUserFtpHandle ftpSessionPtr,
char * pathNamePtr
);

Function description
This function deletes file on remote file system.

Parameters
Parameter Description
ftpSessionPtr FTP session handle
pathNamePtr Filename to delete

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.
TM_EACCES Previous command did not com-

plete.
TM_ENOTCONN The user is not currently connected

to a FTP server.
TM_ENOTLOGIN User is not currently logged in.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_NOCMD Command not implemented
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection.
TM_FTP_FILENAVAIL Requested file action not taken: file

unavailable
TM_FTP_NAVAIL Requested action not taken: file

unavailable
TM_FTP_NOTLOGIN Not logged in.

Application Reference

6.41

tfFtpDirList

#include <trsocket.h>

int tfFtpDirList
(
ttUserFtpHandle ftpSessionPtr,
char * pathNamePtr,
int directoryFlag,
ttFtpCBFuncPtr ftpDirCBFuncPtr
);

Function description
This function retrieves a directory listing for a specified directory on remote file
system. When this data is received, a user-supplied function is called. The prototype
for the callback function is:

int ftpCBFunc
(
ttUserFtpHandle ftpSessionPtr,
char * bufferPtr,
int bufferSize
);

Parameters
Parameter Description
ftpSessionPtr FTP session handle
pathNamePtr Directory name
directoryFlag Indicates whether a short

(TM_DIR_SHORT) or long
(TM_DIR_LONG) directory listing
is desired.

ftpDirCBFuncPtr The function pointer of the user
function to call when the directory
listing is received. See above for
function prototype.

Turbo Treck Real-Time TCP/IP User’s Manual

6.42

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.

TM_EACCES Previous command did not com-
plete.

TM_ENOTCONN The user is not currently connected
to a FTP server.

TM_ENOTLOGIN User is not currently logged in.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_NOCMD Command not implemented
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection.
TM_FTP_FILENAVAIL Requested file action not taken: file

unavailable
TM_FTP_XFERSTART Data connection already open;

transfer starting
TM_FTP_FILEOKAY File status okay; about to open data

communications.
TM_FTP_DATAOPEN Can’t open data connection
TM_FTP_XFERABOR Connection trouble, closed; transfer

aborted TM_FTP_LOCALERR
Requested action aborted: local
error in processing.

TM_FTP_NOTLOGIN Not logged in.

Application Reference

6.43

tfFtpFreeSession

#include <trsocket.h>

int tfFtpFreeSession
(
ttUserFtpHandle ftpSessionPtr
);

Function description
This function frees resources associated with specified FTP session. Should be
called by a user when a session has completed.

Parameters
Parameter Description
ftpSessionPtr FTP session handle

Returns
Value Meaning
TM_ENOERROR Success
TM_EINVAL Invalid FTP session pointer

Turbo Treck Real-Time TCP/IP User’s Manual

6.44

tfFtpGetReplyText

#include <trsocket.h>

int tfFtpGetReplyText
(
ttUserFtpHandle ftpSessionPtr,
char * replyStrPtr,
int replyStrLen
);

Function description
This function retrieves the full text of the reply to the most recently executed FTP
command.

Parameters
Parameter Description
ftpSessionPtr FTP session handle
replyStrPtr Pointer to string to place reply text
replyStrLen Length of above string buffer

Returns
Value Meaning
char * Length of data copied into user

string, zero if invalid parameter or
no reply string available.

Application Reference

6.45

tfFtpHelp

#include <trsocket.h>

int tfFtpHelp
(
ttUserFtpHandle ftpSessionPtr,
char * commandPtr,
ttFtpCBFuncPtr ftpDirCBFuncPtr
);

Function description
This function retrieves help on the specified command from the remote FTP server.
When this data is retrieved, a user-supplied function is called. The prototype for
the callback function is:

int ftpCBFunc
(
ttUserFtpHandle ftpSessionPtr,
char * bufferPtr,
int bufferSize
);

Parameters
Parameter Description
ftpSessionPtr FTP session handle
commandPtr Command to receive help on
ftpDirCBFuncPtr The function pointer of the user

function to call when the directory
listing is received. See above for
function prototype.

Turbo Treck Real-Time TCP/IP User’s Manual

6.46

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.

TM_EACCES Previous command did not com-
plete.

TM_ENOTCONN The user is not currently connected
to a FTP server.

TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_NOCMD Command not implemented
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection.

Application Reference

6.47

tfFtpLogin

#include <trsocket.h>

int tfFtpLogin
(
ttUserFtpHandle ftpSessionPtr,
char * userNamePtr,
char * passwordNamePtr,
char * accountNamePtr
);

Function description
Attempts to log on and authenticate to the remote FTP server.

Parameters
Parameter Description
ftpSessionPtr FTP session handle
userNamePtr Username string
passwordNamePtr Password string
accountNamePtr Account string (if needed)

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.
TM_EACCES Previous command did not com-

plete.
TM_ENOTCONN The user is not currently connected

to a FTP server.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized.
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection.
TM_FTP_NEEDPASS User name okay, need password
TM_FTP_NEEDACCTLOGIN Need account for login
TM_FTP_BADCMDSEQ Bad sequence of commands.

Turbo Treck Real-Time TCP/IP User’s Manual

6.48

tfFtpMkd

#include <trsocket.h>

int tfFtpMkd
(
ttUserFtpHandle ftpSessionPtr,
char * directoryPathNamePtr,
char * bufferPtr,
int bufferSize
);

Function description
This Function creates directory on remote file system.
Parameters

Parameter Description
ftpSessionPtr FTP session handle
directoryPathNamePtr Path of directory to create
bufferPtr Pointer to buffer to receive result from

MKD command
bufferSize Size of above result buffer

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking and

the call did not complete.
TM_EACCES Previous command did not complete.
TM_ENOTCONN The user is not currently connected to a

FTP server.
TM_ENOTLOGIN User is not currently logged in.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecognized
TM_FTP_SYNTAXARG Syntax error in parameters or arguments
TM_FTP_NOCMD Command not implemented
TM_FTP_SERVNAVAIL Service not available, closing TELNET

connection.
TM_FTP_FILENAME Request action not taken: file name not

allowed.
TM_FTP_NOTLOGIN Not logged in.

Application Reference

6.49

tfFtpNewSession

#include <trsocket.h>

 ttUserFtpHandle tfFtpNewSession

(

int fileSystemFlags,

int blockingState,

char * fsUsernamePtr,

char * fsPasswordPtr

);

Function description
This function creates a new FTP client session. This session may be used for
multiple consecutive connections to multiple servers. This call returns a handle
that should be used for all future commands associated with this session. When
the session is complete, the user should call tfFtpFreeSession to free the resources
used by this session. The user can specify whether this session should be block-
ing or non-blocking by setting blockingState accordingly (TM_BLOCKING_ON
and TM_BLOCKING_OFF, respectively).

Parameters
 Parameter Description
fileSystemFlags Flags to be passed to the local file

system when it is opened.
blockingState Specifies the blocking mode.

TM_BLOCKING_ON or
TM_BLOCKING_OFF.

fsUsernamePtr Username used to log on to local
file system.

fsPasswordPtr Password used to log on to local
file system.

Returns
Value Meaning
0 Error creating new FTP session
ttUserFtpHandle Handle associated with the newly

created FTP session.

Turbo Treck Real-Time TCP/IP User’s Manual

6.50

tfFtpNoop

#include <trsocket.h>

int tfFtpNoop
(
ttUserFtpHandle ftpSessionPtr
);

Function description
This function sends the NOOP command to the FTP server (which does nothing).
This command is most frequently used to keep an idle FTP connection open.

Parameters
Parameter Description
ftpSessionPtr FTP session handle

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.
TM_EACCES Previous command did not com-

plete.
TM_ENOTCONN The user is not currently connected

to a FTP server.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized

Application Reference

6.51

tfFtpPort

#include <trsocket.h>

int tfFtpPort
(
ttUserFtpHandle ftpSessionPtr,
ttUserIpPort ftpPortNo
);

Function description
This function sets the local port number that incoming data connections should
use.

Parameters
Parameter Description
ftpSessionPtr FTP session handle
ftpPortNo Port number to use for incoming

data connections
Returns

Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.
TM_EACCES Previous command did not com-

plete.
TM_ENOTLOGIN The user is not currently logged in.
TM_ENOTCONN The user is not currently connected

to a FTP server.
TM_EINVAL Invalid FTP session pointer

Turbo Treck Real-Time TCP/IP User’s Manual

6.52

tfFtpPwd

#include <trsocket.h>

int tfFtpPwd
(
ttUserFtpHandle ftpSessionPtr,
char * bufferPtr,
int bufferSize
);

Function description
Returns present working directory on remote file system.

Parameters
Parameter Description
ftpSessionPtr FTP session handle
bufferPtr Pointer to buffer to receive
bufferSize Size of above result buffer

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.
TM_EACCES Previous command did not com-

plete.
TM_ENOTCONN The user is not currently connected

to a FTP server.
TM_ENOTLOGIN User is not currently logged in.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_NOCMD Command not implemented
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection.
TM_FTP_NAVAIL Requested action not taken: file

unavailable

Application Reference

6.53

tfFtpQuit

#include <trsocket.h>

int tfFtpQuit
(
ttUserFtpHandle ftpSessionPtr
);

Function description
This function quits the current FTP connection (informs the remote server that we
are closing all current connections).

Parameters
Parameter Description
ftpSessionPtr FTP session handle

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.
TM_EACCES Previous command did not com-

plete.
TM_ENOTCONN The user is not currently connected

to a FTP server.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized.

Turbo Treck Real-Time TCP/IP User’s Manual

6.54

tfFtpRein

#include <trsocket.h>

int tfFtpRein
(
ttUserFtpHandle ftpSessionPtr
);

Function description
Resets current FTP connection to the state just following the initial connection.
This requires that the user be authenticated again, using tfFtpLogin.

Parameters
Parameter Description
ftpSessionPtr FTP session handle

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.

TM_EACCES Previous command did not com-
plete.

TM_ENOTCONN The user is not currently connected
to a FTP server.

TM_EINVAL Invalid FTP session pointer
TM_FTP_SERVREADY Service ready in n minutes (for exact

time, use tfFtpGetReplyText to
retrieve full reply text).

TM_FTP_SERVNAVAIL Service not available, closing
TELNET connection.

TM_FTP_SYNTAXCMD Syntax error, command unrecog-
nized

TM_FTP_NOCMD Command not implemented.

Application Reference

6.55

tfFtpRename

#include <trsocket.h>

int tfFtpRename
(
ttUserFtpHandle ftpSessionPtr,
char * fromNamePtr,
char * toNamePtr
);

Function description
This function renames file on remote file system.

Parameters
Parameter Description
ftpSessionPtr FTP session handle
fromNamePtr Old filename
toNamePtr New filename

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete.
TM_EACCES Previous command did not com-

plete.
TM_ENOTCONN The user is not currently connected

to a FTP server.
TM_ENOTLOGIN User is not currently logged in.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_NOCMD Command not implemented
TM_FTP_NOCMDPARAM Command not implemented for that

parameter.
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection.

Turbo Treck Real-Time TCP/IP User’s Manual

6.56

TM_FTP_FILENAVAIL Requested file action not taken: file
unavailable

TM_FTP_NAVAIL Requested action not taken: file
unavailable

TM_FTP_NEEDACCTFILE Need account for storing files
TM_FTP_FILENAME Request action not taken: file name

not allowed.
TM_FTP_NOTLOGIN Not logged in.

Application Reference

6.57

tfFtpRetr

#include <trsocket.h>

int tfFtpRetr
(
ttUserFtpHandle ftpUserHandleA,
ttUserFtpHandle ftpUserHandleB,
char TM_FAR * fromFileNamePtr,
char TM_FAR * toFileNamePtr
);

Function Description
This function is used to retrieve a file from remote FTP server (corresponding to
ftpUserHandleA). This function is implemented for both passive mode and
normal mode, and also works with both one FTP server model and two FTP
servers model.

• One server model:
If the ftpUserHandleB parameter is NULL, then the one-server
model is used, and the operation could be either in server active
mode or server passive mode. By default the server is in active
mode. The user needs to call tfFtpTurnPasv with the
TM_FTP_PASSIVE_MODE_ON flag to turn the server in passive
mode.

• Two-server model:
If the ftpUserHandleB parameter is non null, then the two-server
model is used, and the first session should be in passive mode, and
the second session should be in active mode. The user needs to
call tfFtpTurnPasv, passing the ftpUserHandleA parameter, and the
TM_FTP_PASSIVE_MODE_ON.

Parameters
Parameter Description
ftpUserHandleA The user handle of main FTP

session will be operated on.
ftpUserHandleB The user handle of the 2nd FTP

session for two FTP server model.
fromFileNamePtr Pointer to source file name string
toFileNamePtr Pointer to destination file name

string.

Turbo Treck Real-Time TCP/IP User’s Manual

6.58

Returns
Value Meaning
TM_EWOULDBLOCK The call is non blocking and did not

complete.
TM_EINVAL Invalid ftpSessionPtr or bad

filename.
TM_EACCES Previous command has not finished
TM_ENOTLOGIN Command requires user to be

loggedin, and user is not.
TM_ENOTCONN Command requires connection, and

user is not connected
TM_EOPNOTSUPP Command not supported by the

user
TM_ENOERROR No error (Success.)
TM_FTP_XFERSTART Data connection already open;

transfer starting.
TM_FTP_FILEOKAY File status okay; about to open data

connection.
TM_FTP_DATAOPEN Can’t open data connection.
TM_FTP_XFERABOR Connection trouble, closed; transfer

aborted.
TM_FTP_LOCALERR Requested action aborted: local

error in processing.
TM_FTP_FILENAVAIL Requested file action not taken: file

unavailable.
TM_FTP_NAVAIL Requested action not taken: file

unavailable
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection.
TM_FTP_NOTLOGIN Not logged in.

Application Reference

6.59

tfFtpRmd

#include <trsocket.h>

int tfFtpRmd
(
ttUserFtpHandle ftpSessionPtr,
char * directoryPathNamePtr
);

Function Description
Removes directory on the remote file system.

Parameters
Parameter Description
ftpSessionPtr FTP session handle
directoryPathNamePtr Path of directory to remove

Returns

Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete
TM_EACCES Previous command did not com-

plete
TM_ENOTCONN The user is not currently connected

to a FTP server
TM_ENOTLOGIN User is not currently logged in.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_NOCMD Command not implemented
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection.
TM_FTP_NAVAIL Requested action not taken: file

unavailable
TM_FTP_NOTLOGIN Not logged in

Turbo Treck Real-Time TCP/IP User’s Manual

6.60

tfFtpStor

#include <trsocket.h>

int tfFtpRetr
(
ttUserFtpHandle ftpUserHandleA,
ttUserFtpHandle ftpUserHandleB,
char TM_FAR * fromFileNamePtr,
char TM_FAR * toFileNamePtr
);

Function Description
This function is used to transmit a file to remote FTP server (corresponding to
ftpUserHandleA). This function is implemented for both passive mode and
normal mode, and also works with both one FTP server model and two FTP
servers model.

• One server model:
If the ftpUserHandleB parameter is NULL, then the one-server model is
used, and the operation could be either in server active mode or server
passive mode. By default the server is in active mode. The user needs to
call tfFtpTurnPasv with the TM_FTP_PASSIVE_MODE_ON flag to turn
the server in passive mode.

• Two-server model:
If the ftpUserHandleB parameter is non null, then the two-server model
is used, and the first session should be in passive mode, and the
second session should be in active mode. The user needs to call
tfFtpTurnPasv, passing the ftpUserHandleA parameter, and the
TM_FTP_PASSIVE_MODE_ON.

Parameters

Parameter Description
ftpUserHandleA The user handle of main FTP

session will be operated on.
ftpUserHandleB The user handle of the 2nd FTP

session for two FTP server model.
fromFileNamePtr Pointer to source file name string
toFileNamePtr Pointer to destination file name

string.

Application Reference

6.61

Returns
Value Meaning
TM_EWOULDBLOCK The call is non blocking and did not

complete.
TM_EINVAL Invalid ftpSessionPtr or bad

filename.
TM_EACCES Previous command has not finished
TM_ENOTLOGIN Command requires user to be

loggedin, and user is not.
TM_ENOTCONN Command requires connection, and

user is not connected
TM_EOPNOTSUPP Command not supported by the

user
TM_ENOERROR No error (Success.)
TM_FTP_XFERSTART Data connection already open;

transfer started
TM_FTP_FILEOKAY File status okay; about to open data

connection.
TM_FTP_DATAOPEN Can’t open data connection
TM_FTP_XFERABOR Connection trouble, closed; transfer

aborted
TM_FTP_LOCALERR Requested action aborted: local

error in processing
TM_FTP_EXSPACE Requested file action aborted:

exceed storage allocation
TM_FTP_NOSPACE Request action not taken: insuffi-

cient storage space in system
TM_FTP_FILENAVAIL Requested file action not taken: file

unavailable
TM_FTP_FILENAME Requested action not taken: file

name not allowed.
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_NOCMDPARAM Command not implemented for that

parameter
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection.
TM_FTP_NOTLOGIN Not logged in

Turbo Treck Real-Time TCP/IP User’s Manual

6.62

tfFtpSyst

#include <trsocket.h>

int tfFtpSyst
(
ttUserFtpHandle ftpSessionPtr,
char * bufferPtr,
int bufferSize
);

Function Description
This function returns information about the system hosting the remote file system.

Parameters
Parameter Description
ftpSessionPtr FTP session handle
bufferPtr Pointer to buffer to receive result

from SYST command
bufferSize Size of above result buffer

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete
TM_EACCES Previous command did not com-

plete.
TM_ENOTCONN The user is not currently connected

to a FTP server.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_NOCMD Command not implemented
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection

Application Reference

6.63

tfFtpTurnPasv

int tfFtpTurnPasv
(
ttUserFtpHandle ftpUserHandle,
int onFlag
);

Function Description

This function is used to set the mode of the FTP data connection on the peer
FTP server. Note that this API will not send the PASV command to the server. It
will merely set the mode on the FTP client session.

• If the TM_FTP_PASSIVE_MODE_OFF flag is set, then the peer FTP
server will initiate the data connection, i.e. connect on the data connec-
tion (default setting).

• If the TM_FTP_PASSIVE_MODE_ON flag is set, then the peer FTP
server will not initiate the connection on the data connection, but rather
wait for a data connection

• The User can turn on/off passive mode by using this function before
setting up data connections.

Parameters

Parameter Description
ftpUserHandle The user handle of FTP session will

be operated on.
onFlag The FTP passive mode. This

parameter can be
TM_FTP_PASSIVE_MODE_ON or
TM_FTP_PASSIVE_MODE_OFF.

Returns
Name Description
TM_EINVAL Invalid argument.
TM_ENOERROR No error

Turbo Treck Real-Time TCP/IP User’s Manual

6.64

tfFtpType

#include <trsocket.h>

int tfFtpType
(
ttUserFtpHandle ftpSessionPtr,
int type
);

Function Description
This function sets the transfer type to either binary or ASCII.

Parameters
Parameter Description
ftpSessionPtr FTP session handle
type Transfer type: TM_TYPE_ASCII or

TM_TYPE_BINARY

Returns
Value Meaning
TM_ENOERROR Success
TM_WOULDBLOCK This FTP session is non-blocking

and the call did not complete
TM_EACCES Previous command did not com-

plete
TM_ENOTCONN The user is not currently connected

to a FTP server.
TM_EINVAL Invalid FTP session pointer
TM_FTP_SYNTAXCMD Syntax error, command unrecog-

nized
TM_FTP_SYNTAXARG Syntax error in parameters or

arguments
TM_FTP_NOCMDPARAM Command not implemented for that

parameter
TM_FTP_SERVNAVAIL Service not available, closing

TELNET connection
TM_FTP_NOTLOGIN Not logged in

Application Reference

6.65

tfFtpUserExecute

#include <trsocket.h>

int tfFtpUserExecute
(
ttUserFtpHandle ftpSessionPtr
);

Function Description
This function executes the FTP client main loop. Call valid only if
tfFtpNewSession had been called in non-blocking mode, and tfFtpUserExecute is
not currently executing.

Parameters
Parameter Description
ftpSessionPtr FTP session handle

Returns
Value Meaning
TM_ENOERROR The current command has success-

fully completed.
TM_EWOULDBLOCK The current command has not yet

completed, and tfFtpUserExecute
should be called again.

TM_EINVAL Invalid FTP handle.
TM_EACCES Blocking is currently on; This

function should only be called
when blocking is disabled.

Turbo Treck Real-Time TCP/IP User’s Manual

6.66

FTP Passive Mode
Description
FTP passive mode is fully supported in the new release. The user may use it in
both one-server and two-server passive models. Operation in two-server passive
model is illustrated here:

Server-FTP
"A"

User-FTP
User-PI

"C"

Server-FTP
"B"

Data Connection

Port (A) Port (B)

ControlControl

User-PI - Server A User-PI - Server B

C->A : Connect C->B : Connect
C->A : PASV
A->C : 227 Entering Passive Mode. A1,A2,A3,A4,a1,a2

C->B : PORT A1,A2,A3,A4,a1,a2
B->C : 200 Okay

C->A : STOR C->B : RETR

 B->A : Connect to HOST-A, PORT-a

Operation in one-server mode is illustrated here:

User-PI
User-FTP

"C"

Server-PI
Server-FTP

"A"Data Connection

Control

 C->A : Connect
 C->A : PASV
 A->C : 227 Entering Passive Mode. A1,A2,A3,A4,a1,a2
 C->A : Connect to HOST-A, PORT-a
 C->A : RETR

Application Reference

6.67

Example
 Example for two server passive mode operation (STOR):

#include <trsocket.h>
#include <stdio.h> /* for printf() */

ttUserFtpHandle setupFtpCtrl(char * ipaddr)
{
 int retCode;
 ttUserFtpHandle ftpHandle;

/* Create New Session for FTP server */
 ftpHandle = tfFtpNewSession(0, TM_BLOCKING_ON,
“fsusername”, “fspassword”);
 if (ftpHandle == (ttUserFtpHandle) 0)
 {
 printf(“\n Failed to create FTP session!”);
 }
 else
 {
/* Connect to FTP server */
 retCode = tfFtpConnect(ftpHandle, ipaddr);
 if (retCode != TM_ENOERROR)
 {
 printf(“\n Failed to connect FTP server
!”);
 (void)tfFtpFreeSession(ftpHandle);
 ftpHandle = (ttUserFtpHandle)0;
 }
 else
 {

/* Login to FTP server */
 retCode = tfFtpLogin(ftpHandle,
“ftpusername”, “ftppassword”,””);
 if (retCode != TM_ENOERROR)
 {
 printf(“\n Failed to login on FTP
server !”);
 (void)tfFtpClose(ftpHandle);
 (void)tfFtpFreeSession(ftpHandle);
 ftpHandle = (ttUserFtpHandle)0;
 }
 else
 {

Turbo Treck Real-Time TCP/IP User’s Manual

6.68

 printf(“\n Successfully setup CTRL
conn to FTP ! “);
 }
 }
 }

 return ftpHandle;
}

void main(void)
{
 ttUserFtpHandle ftpHandleA;
 ttUserFtpHandle ftpHandleB;

…. ….

/* Start the Treck stack */

…. ….

/* Setup Ctrl connection to FTP server A */
 ftpHandleA = setupFtpCtrl(“192.168.1.100”);

/* Setup Ctrl connection to FTP server B */
 ftpHandleB = setupFtpCtrl(“192.168.1.200”);

/* Set FTP session A operating in passive mode */
 (void)tfFtpTurnPasv(ftpHandleA,TM_FTP_PASSIVE_MODE_ON);

/* STOR: file will be transferred from server B to
 *server A
 */
 (void)tfFtpStor(ftpHandleA, ftpHandleB,
 “testFtpFile”, “testFtpFile”);
…. ….
 return;
}
Example for one server passive mode operation (STOR):

#include <trsocket.h>
#include <stdio.h> /* for printf() */

void main(void)
{
 ttUserFtpHandle ftpHandle;

Application Reference

6.69

…. ….

/* Start the Treck stack */

…. ….

/* Setup Ctrl connection to FTP server */
 ftpHandle = setupFtpCtrl(“192.168.1.100”);

/* Set FTP session operating in passive mode */
 (void)tfFtpTurnPasv(ftpHandle,TM_FTP_PASSIVE_MODE_ON);

/* STOR: file will be transferred from client to
 * server
 */
 (void)tfFtpStor(ftpHandle, 0,
 “testFtpFile”, “testFtpFile”);
…. ….

 return;
}

* For function prototype setupFtpCtrl, please refer to example of Two-FTP-
Server Passive Mode.

Turbo Treck Real-Time TCP/IP User’s Manual

6.70

TFTP Client Application Program Interface
Description
The TFTP Client Application Program Interface allows the user to retrieve files
from and store files to a remote TFTP server.

User interface
The user interface allows the user to get and put files from a remote TFTP server.

User Interface
Five calls are provided in the TFTP Client User Interface.

tfTftpGet Called by the user to get a file from
a TFTP server.

tfTftpInit This function must be called before
any other TFTP API calls are made.
It initializes various data associated
with the TFTP client.

tfTftpPut Called by the user to store a file to a
TFTP server.

tfTftpSetTimeout Called by the user to set timeout
and retry values.

tfTftpUserExecute If the stack is running in non-
blocking mode, this function must
be called periodically in order to get
the client to execute. In blocking
mode, this function should not be
called

Blocking Mode
In blocking mode, tfTftpGet and tfTftpPut will both block until the transfer is
completed or an error is returned. The TFTP client code is executed in the context
of the calling task. Choose blocking mode if you are using an RTOS/Kernel.

Non-Blocking Mode
In non-blocking mode, calls to tfTftpGet and tfTftpPut will return immediately.
tfTftpUserExecute must be called periodically to cause them to execute. Choose
non-blocking mode if you are not using an RTOS/Kernel.

Application Reference

6.71

tfTftpGet

#include <trsocket.h>

int tfTftpGet
(
char * filename,
struct sockaddr * remote_addr,
char * tftpbuf,
unsigned long int bufsize,
unsigned short int mode,
int blocking
);

Function Description
This function retrieves a file from a TFTP server.

Blocking Mode
In blocking mode, tfTftpGet should be called from within a task. It will block until
the file transfer is completed, or an error is returned. The TFTP client code is
executed in the context of the calling task. Choose blocking mode if you are using
an RTOS/Kernel.

Non-Blocking Mode
In non-blocking mode, tfTftpGet will return immediately. It is then the user’s
responsibility to then call tfTftpUserExecute periodically to execute the TFTP
client code. Choose non-blocking mode if you do not have an RTOS/Kernel.

Turbo Treck Real-Time TCP/IP User’s Manual

6.72

Parameters
Parameter Description
filename Null-terminated string containing

the file name to retrieve from the
server.

remote_addr Structure representing the address
of the server. The type (AF_INET),
address, and port (for TFTP, usually
69) must be filled in.

tftpbuf A pointer to a buffer to store the file
into.

bufsize The size, in bytes, of the buffer.
mode TM_TYPE_ASCII for ASCII

transfers, TM_TYPE_BINARY for
binary transfers.

blocking TM_BLOCKING_ON for blocking
mode, TM_BLOCKING_OFF for
non-blocking mode.

Returns
Value Meaning
0 Success
TM_TFTP_EXECUT A session is already in progress. Only one

session may be in progress at a time.
TM_TFTP_EINVAL mode is neither TM_TYPE_ASCII nor

TM_TYPE_BINARY
TM_TFTP_EINVAL blockingState is neither TM_BLOCKING_ON

nor TM_BLOCKING_OFF.
TM_TFTP_EINVAL blockingState is TM_BLOCKING_ON and

blocking-mode is not enabled for the stack.
TM_TFTP_ESOCK An error occurred with one or more of the

socket calls within the function.
TM_TFTP_EBUF the buffer is not large enough to hold the

received file

Application Reference

6.73

tfTftpInit

#include <trsocket.h>

void tfTftpInit
(
void
);

Function description
This function initializes various data associated with the TFTP client. It must be
called before any other TFTP client API call.

Parameters
None

Returns
None

Turbo Treck Real-Time TCP/IP User’s Manual

6.74

tfTftpPut

#include <trsocket.h>

int tfTftpPut
(
char * filename,
struct sockaddr * remote_addr,
char * tftpbuf,
unsigned long int bufsize,
unsigned short int mode,
int blocking
);

Function Description
This function sends a file to a TFTP server.

Blocking Mode
In blocking mode, tfTftpPut should be called from within a task. It will block until
the file transfer is completed, or an error is returned. The TFTP client code is
executed in the context of the calling task. Choose blocking mode if you are using
an RTOS/Kernel.

Non-Blocking Mode
In non-blocking mode, tfTftpPut will return immediately. It is then the user’s
responsibility to then call tfTftpUserExecute periodically to execute the TFTP
client code. Choose non-blocking mode if you do not have an RTOS/Kernel.

Application Reference

6.75

Parameters

Parameter Description
filename Null-terminated string containing

the file name to send to the server
remote_addr Structure representing the address

of the server. The type (AF_INET),
address, and port (for TFTP, usually
69) must be filled in

tftpbuf A pointer to a buffer to store the file
into

bufsize The number of bytes to send from
the buffer

mode TM_TYPE_ASCII for ASCII
transfers, TM_TYPE_BINARY for
binary transfers

blocking TM_BLOCKING_ON for blocking
mode, TM_BLOCKING_OFF for
non-blocking mode

Returns
Value Meaning
0 Success
TM_TFTP_EXECUT A session is already in progress.

Only one session may be in
progress at a time

TM_TFTP_EINVAL mode is neither TM_TYPE_ASCII
nor TM_TYPE_BINARY

TM_TFTP_EINVAL blockingState is neither
TM_BLOCKING_ON nor
TM_BLOCKING_OFF

TM_TFTP_EINVAL blockingState is
TM_BLOCKING_ON and blocking-
mode is not enabled for the stack

TM_TFTP_ESOCK An error occurred with one or more
of the socket calls within the
function

Turbo Treck Real-Time TCP/IP User’s Manual

6.76

tfTftpSetTimeout

#include <trsocket.h>

void tfTftpSetTimeout
(
int timeout,
int retry
);

Function description

This function allows the user to set the retry and timeout values for the TFTP client.

Parameters
Parameter Description
timeout The length of time (in seconds) a

connection can remain silent before
it times out.

retry The number of consecutive times a
connection can time out before it is
closed.

Returns
None

Application Reference

6.77

tfTftpUserExecute

#include <trsocket.h>

ttUser32Bit tfTftpUserExecute
(
void
);

Function description
This function executes the TFTP client’s main loop. This call is valid only if tfTftpGet
or tfTftpPut has been called in non-blocking mode and tfTftpUserExecute is not
currently executing.

Parameters
None

Returns
Value Meaning
>0 tfTftpGet transfer was successful.

This value is the size of the file
received.

TM_TFTP_SUCCESS tfTftpPut transfer was successful.
TM_TFTP_EXECUT This value is returned while the

transfer is in progress.
TM_TFTP_TIMEOUT A TFTP operation timed out.
TM_TFTP_EBUF Insufficient memory.
TM_TFTP_ESOCK A socket error occurred.
TM_TFTP_ERROR General TFTP error.

Turbo Treck Real-Time TCP/IP User’s Manual

6.78

TFTPD Application Program Interface
Description
The TFTPD Application Program Interface allows the user to run a TFTP server.
It consists of two parts:

User interface
The user interface allows the user to start/stop the TFTP server to allow/stop
remote TFTP clients to connect and exchange files with the host.

File system interface
The file system interface allows the TFTP server to interact with the operating
system’s file system to do such things as store and retrieve files.

User Interface
Four calls are provided in the TFTPD User Interface.
 1. tfTftpdInit

This function must be called before any other TFTP API calls are made. It initial-
izes various data associated with the TFTP server.

2. tfTftpdUserStart
The user calls tfTftpdUserStart to open a TFTP server socket and to begin
listening for incoming connections. tfTftpdUserStart can be either blocking or
non blocking, as specified by its last parameter.

Blocking Mode
In blocking mode, tfTftpdUserStart should be called from a task. It will
block and wait for incoming connections, and will not return unless an
error occurs. The TFTP server code is executed in the context of the
calling task. Choose blocking mode if you are using an RTOS/Kernel.

Non-Blocking Mode
In non-blocking mode, tfTftpdUserStart will return immediately after
checking for incoming connections. It is the user’s responsibility to then
call tfTftpdUserExecute periodically to execute the TFTP server code.
Choose non-blocking mode if you do not have an RTOS/Kernel.

3. tfTftpdUserExecute
If tfTftpdUserStart was called in non-blocking mode, tfTftpdUserExecute must
be called periodically. If tfTftpdUserStart was called in blocking mode, there is
no need to call tfTftpdUserExecute.

4. tfTftpdUserStop

Application Reference

6.79

The user calls tfTftpdUserStop to close the TFTP server socket and kill all
existing TFTP connections.

File System Interface

Note: File system calls for TFTP can be found in the File System Section of
this manual.

tfTftpdInit

#include <trsocket.h>

void tfTftpdInit
(
void
);

Function description
This function initializes various data associated with the TFTP server. It must be
called before any other TFTP API call.

Parameters
None

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

6.80

tfTftpdUserExecute

#include <trsocket.h>

int tfTftpdUserExecute
(
void
);

Function description
This function executes the TFTP server’s main loop. This call is valid only if
tfTftpdUserStart has been called in non-blocking mode and tfTftpdUserExecute is
not currently executing.

Parameters
None

Returns
Value Meaning
0 Success
TM_EPERM TFTP server currently executing,

not started, or stopped

Application Reference

6.81

 tfTftpdUserStart

#include <trsocket.h>

int tfTftpdUserStart
(
int maxConnections,
int sendTimeout,
int timeoutTime,
int blockingState
);

Function Description
This function opens a TFTP server socket and starts listening for incoming
connections. tfTftpdUserStart can be either blocking or non-blocking, as specified
by the blockingState parameter.

Blocking Mode
In blocking mode, tfTftpdUserStart should be called from a task. It will block
and wait for incoming connections, and will not return unless an error occurs.
The TFTP server code is executed in the context of the calling task. Choose
blocking mode if you are using an RTOS/Kernel.

Non-Blocking Mode
In non-blocking mode, tfTftpdUserStart will return immediately after checking
for incoming connections. It is the user’s responsibility to then call
tfTftpdUserExecute periodically to execute the TFTP server code. Choose
non-blocking mode if you do not have an RTOS/Kernel.

Turbo Treck Real-Time TCP/IP User’s Manual

6.82

Parameters
Parameter Description
maxConnections Maximum number of concurrent

incoming TFTP connections
allowed. Must be at least one

sendTimeout The amount of time, in seconds, a
connection can be idle before it
times out

timeoutTime The number of consecutive retries a
connection will make before it gives
up. Each time a connection times
out, it counts as one retry

blockingState TM_BLOCKING_ON for blocking
mode, TM_BLOCKING_OFF for
non-blocking mode

Returns
Value Meaning
0 Success
TM_EINVAL maxConnections is less than one
TM_EINVAL blockingState is neither

TM_BLOCKING_ON nor
TM_BLOCKING_OFF.

TM_EINVAL blockingState is
TM_BLOCKING_ON and blocking-
mode is not enabled for the stack.

TM_SOCKET_ERROR The function was unable to create a
socket.

All other error codes This function uses various sockets
calls. Any other error codes
returned will be from said sockets
calls. The error codes are defined in
trsystem.h.

Application Reference

6.83

tfTftpdUserStop

#include <trsocket.h>

int tfTftpdUserStop
(
void
);

Function description
This function stops execution of the TFTP server. It closes the listening socket and
killing all existing connections.

Parameters
None

Returns
Value Meaning
0 Success
TM_EALREADY The TFTP server has already been

stopped.

Turbo Treck Real-Time TCP/IP User’s Manual

6.84

File system interface
Description
The file system interface is used by the Turbo Treck FTP server, Turbo Treck TFTP
server, and Turbo Treck FTP Client.

Entry points from the FTP server to the file system:
tfFSChangeDir Change current working directory
tfFSChangeParentDir Change current working directory

to parent directory
tfFSCloseDir Close a directory that we had

opened earlier.
tfFSCloseFile Close a file
tfFSDeleteFile Delete a file
tfFSGetNextDirEntry Get the next directory entry in the

directory open with tfFSOpenDir,
either a long listing of the directory
entry (including volumes, sub
directories, and file names), or a
short listing of the directory (file
name only), depending on how the
directory was open

tfFSGetUniqueFileName Given a file name, return a unique
file name in the current directory
(i.e, if the file name already exists,
make up a new name that is unique
in the current directory.)

tfFSGetWorkingDir Get user working directory
tfFSMakeDir Create specified directory
tfFSOpenDir Open specified directory, or

directory corresponding to a
specified pattern to allow getting a
long or short listing of the directory
or of the directory entries matching
the specified pattern

tfFSOpenFile Open a file (creating it if it does not
exist), for read, write, or append,
specifying type (ASCII, or binary),
structure (stream, or record)

tfFSReadFile Read n bytes from a file into a
buffer

Application Reference

6.85

tfFSReadFileRecord Read a record from a file up to n
bytes. Indicates whether EOR has
been reached

tfFSRemoveDir Remove specified directory
tfFSRenameFile Rename a file
tfFSStructureMount Mount the user to a new file system

data structure
tfFSSystem Return the system name
tfFSUserAllowed Indicates whether a specified user

is allowed on the system
tfFSUserLogin Login a user if password is valid
tfFSUserLogout Logout a user.
tfFSWriteFile Write some bytes from a buffer to a

file
tfFSWriteFileRecord Write a record from a buffer to a file

Entry points from the FTP client to the file system:
Note: The Turbo Treck FTP client only uses a subset of the functions described
above, namely the eight functions in the list below.

tfFSCloseDir
tfFSCloseFile
tfFSOpenDir
tfFSOpenFile
tfFSReadFile
tfFSUserLogin
tfFSUserLogout
tfFSWriteFile

Entry points from the TFTP server to the file system:
Note: The Turbo Treck TFTP server only uses a subset of the functions described
above, namely the six functions in the list below:

tfFSCloseDir
tfFSCloseFile
tfFSOpenDir
tfFSOpenFile
tfFSReadFile
tfFSWriteFile

Turbo Treck Real-Time TCP/IP User’s Manual

6.86

tfFSChangeDir

#include <trsocket.h>

int tfFSChangeDir
 (
void * userDataPtr,
char * pathNamePtr
);

Function description
Given the unique user data pointer as returned by tfFSUserLogin and a directory
name, this function changes the user’s working directory to the new directory.

Parameters
Parameter Description
 userDataPtr Pointer to user data structure as

returned by tfFSUserLogin

 pathNamePtr Pointer to a null terminated string
containing directory path name

Returns
Value Meaning
 0 Success
 -1 Failure

Application Reference

6.87

tfFSChangeParentDir

#include <trsocket.h>

int tfFSChangeParentDir
(
void userDataPtr
);

Function description
Given the unique user data pointer as returned by tfFSUserLogin, this function
changes the user’s working directory to its parent directory.

Parameters
Parameter Description
 userDataPtr Pointer to user data structure as

returned by tfFSUserLogin

Returns
Value Meaning
 0 Success
 -1 Failure

Turbo Treck Real-Time TCP/IP User’s Manual

6.88

tfFSCloseDir

#include <trsocket.h>

void tfFSCloseDir
(
void * userDataPtr,
void * dirDataPtr
);

Function description
Given a unique user data pointer as returned by tfFSUserLogin and a directory
data pointer as returned by tfFSOpenDir, this function closes the directory and
frees the directory data structure pointed to by dirDataPtr.

Parameters
Parameter Description
 userDataPtr Pointer to user data structure as

returned by tfFSUserLogin
 dirDataPtr Pointer to newly allocated directory

data structure

Returns
Nothing

Application Reference

6.89

tfFSCloseFile

#include <trsocket.h>

int tfFSCloseFile
(
void * userDataPtr,
void * fileDataPtr
);

Function description
Given a unique user data pointer as returned by tfFSUserLogin and a file data
pointer as returned by tfFSOpenFile, this function closes the file and frees the file
data structure pointed to by fileDataPtr.

Parameters
Parameter Description
 userDataPtr Pointer to user data structure as

returned by tfFSUserLogin
 fileDataPtr Pointer to file data structure as

returned by tfFSOpenFile
Returns

Value Meaning
0 Success
-1 Failure

Turbo Treck Real-Time TCP/IP User’s Manual

6.90

tfFSDeleteFile

#include <trsocket.h>

int tfFSDeleteFile
 (
void * userDataPtr,
char * pathNamePtr
);

Function description
Given the unique user data pointer as returned by tfFSUserLogin and a file name,
this function deletes the file.

Parameters
Parameter Description
userDataPtr Pointer to user data structure as

returned by tfFsUserLogin
pathNamePtr Pointer to a null terminated string

containing file name.
Returns

Value Meaning
 0 Success
-1 Failure

Application Reference

6.91

tfFSGetNextDirEntry

#include <trsocket.h>

int tfFSGetNextDirEntry
(
void * userDataPtr,
void * dirDataPtr,
char * bufferPtr,
int bufferSize
);
Function description
Given the unique user data pointer as returned by tfFSUserLogin and a directory
data pointer as returned by tfFSOpenDir, this function retrieves the next entry in
the directory that matches the path given as an argument to tfFSOpenDir. The next
entry should be either a long listing of the next directory entry (either volume name,
sub-directory, or file name with its attribute), or a short listing of the directory entry
(file name only without any attribute), and should be stored in the buffer pointed to
by bufferPtr (up to bufferSize bytes). The FTP server will continue calling
tfFSGetNextDirEntry until it gets a return value of 0 bytes, indicating that all
matching directory entries have been retrieved. It is up to the developer of
tfFSGetNextDirEntry to keep track of how many entries of the listing have been
read so far, whether the directory was open for long or short listing, and the match-
ing pattern (using dirDataPtr).

Parameters
Parameter Description
userDataPtr Pointer to user data structure as

returned by tfFSUserLogin
dirDataPtr Pointer to newly allocated directory

data structure
bufferPtr Pointer to a buffer where to copy

the next directory entry
bufferSize Size in bytes of the buffer

Returns
 Value Meaning
 -1 Failure
 > 0 Number of bytes copied into the

buffer pointed to by bufferPtr
0 End of directory

Turbo Treck Real-Time TCP/IP User’s Manual

6.92

tfFSGetUniqueFileName

#include <trsocket.h>

int tfFSGetUniqueFileName
void * userDataPtr,
char * bufferPtr,
int bufferSize
);

Function description
Given the unique user data pointer as returned by tfFSUserLogin, this function
finds and copies a unique file name that does not conflict with any existing file
names in the user’s working directory in the buffer pointed to by bufferPtr (up to
bufferSize bytes).

Parameters
Parameter Description
 userDataPtr Pointer to user data structure as re-

turned by tfFsUserLogin
 bufferPtr Pointer to buffer where to store the

unique file name
 bufferSize Size in bytes of the buffer

Returns
Value Meaning
 -1 Failure
> 0 Number of copied bytes

Application Reference

6.93

tfFSGetWorkingDir

#include <trsocket.h>

int tfFSGetWorkingDir
(
void userDataPtr,
char bufferPtr,
int bufferSize
);

Function description
Given the unique user data pointer as returned by tfFSUserLogin, copy the user’s
working directory in the buffer pointed to by bufferPtr (up to bufferSize).

Parameters
Parameter Description
userDataPtr Pointer to user data structure as

returned by tfFSUserLogin
bufferPtr Pointer to a buffer where to copy

the pathname of the user working
directory

bufferSize Size in bytes of the buffer.

Returns
Value Meaning
 -1 Failure
> 0 Number of bytes copied into the

buffer pointed to by bufferPtr

Turbo Treck Real-Time TCP/IP User’s Manual

6.94

tfFSMakeDir

#include <trsocket.h>

int tfFSMakeDir
 (
void * userDataPtr,
char * pathNamePtr,
char * bufferPtr,
int bufferSize
);

Function description
Given the unique user data pointer as returned by tfFSUserLogin, and a directory
name, this function creates the directory. If successful, copy the directory path
name in bufferPtr (up to bufferSize). The directory path name could be either abso-
lute or relative to the user working directory path, but should be such that a subse-
quent tfFSChangeDir with that pathname as an argument should not fail.

Parameters

Parameter Description
userDataPtr Pointer to user data structure as

returned by tfFSUserLogin
pathNamePtr Pointer to a null terminated string

containing directory path
bufferPtr Pointer to a buffer where to copy

the pathname of the newly created
directory

bufferSize Size in bytes of the buffer

Returns
Value Meaning
 -1 Failure
 > 0 Number of bytes copied into the

buffer pointed to by bufferPtr

Application Reference

6.95

tfFSOpenDir

#include <trsocket.h>

void * tfFSOpenDir
 (
void * userDataPtr,
char * pathNamePtr,
int flag
);

Function description
Given the unique user data pointer as returned by tfFSUserLogin, a pointer to a
path name, and a flag, this function opens the directory corresponding to the path
for reading either a long directory (flag == TM_DIR_LONG) or short directory
(TM_DIR_SHORT). Subsequent calls to tfFSGetNextDirEntry will fetch each en-
try in the directory matching the pattern as pointed to by pathNamePtr. The
tfFSOpenDir implementer should allocate a directory data structure to keep track
of the path name matching pattern, the reading position in the directory, and the
directory read flag (TM_DIR_LONG, or TM_DIR_SHORT). Note that if pathNamePtr
points to a directory name, then the matching pattern is “*.*”. If pathNamePtr
points to “*.*”, then the user working directory should be open, and the matching
pattern is “*.*”.

Parameters

Parameter Description
 userDataPtr Pointer to user data structure as

returned by tfFSUserLogin
 pathNamePtr Pointer to a null terminated string

containing pathname.
flag Either TM_DIR_LONG, or

TM_DIR_SHORT

Returns
Value Meaning
(void *)0 Failure
 dirDataPtr Pointer to newly allocated directory

data structure

Turbo Treck Real-Time TCP/IP User’s Manual

6.96

tfFSOpenFile

#include <trsocket.h>

void * tfFSOpenFile
 (
void * userDataPtr,
char * pathNamePtr,
int flag,
int type,
int structure
);

Function description:
Given the unique user data pointer as returned by tfFSUserLogin and a file name,
this function opens the file for either read (if flag is TM_FS_READ), write (if flag is
TM_FS_WRITE), or append (if flag is TM_FS_APPEND). The parameter type
specifies if file type is ASCII (TM_TYPE_ASCII) or binary (TM_TYPE_BINARY).
Parameter structure specifies if the file structure is stream (TM_STRU_STREAM),
or record (TM_STRU_RECORD). This function allocates a file data structure to
store the file pointer, file type, file structure, etc.

Note: This call should fail if the file name is a directory.

Parameters
 Parameter Description
userDataPtr Pointer to user data structure as

returned by tfFsUserLogin
pathNamePtr Pointer to a null terminated string

containing file name
flag Open flag: TM_FS_READ,

TM_FS_WRITE, TM_FS_APPEND
type File type: TM_TYPE_ASCII or

TM_TYPE_BINARY.
structure File structure:

TM_STRU_RECORD, or
TM_STRU_STREAM

Returns
 Value Meaning
 (void *)0 Failure
 fileDataPtr Pointer to newly allocated file data

structure.

Application Reference

6.97

tfFSReadFile

#include <trsocket.h>

int tfFSReadFile
(
void * userDataPtr,
void * fileDataPtr,
char * bufferPtr,
int bufferSize
);

Function description
Given the unique user data pointer as returned by tfFSUserLogin and a file data
pointer as returned by tfFSOpenFile, this function reads up to bufferSize bytes into
the buffer. It returns the number of bytes actually read, 0 if end of file has been
reached, -1 on error.

Parameters
Parameter Description
 userDataPtr Pointer to user data structure as

returned by tfFSUserLogin
 fileDataPtr Pointer to file data structure as

returned by tfFSOpenFile
 bufferPtr Pointer to buffer where to copy the

data from the file
 bufferSize Size in bytes of the buffer

Returns
Value Meaning
 > 0 Number of copied bytes
 0 End of file
 -1 Failure

Turbo Treck Real-Time TCP/IP User’s Manual

6.98

tfFSReadFileRecord
#include <trsocket.h>

int tfFSReadFileRecord
(
void * userDataPtr,
void * fileDataPtr,
char * bufferPtr,
int bufferSize,
int * eorPtr
);

Function description
Given the unique user data pointer as returned by tfFSUserLogin and a file data
pointer as returned by tfFSOpenFile, this function reads until it reaches bufferSize
bytes or end of record (whichever comes first). If end of record has been reached it
stores 1 in the integer pointed to by eorPtr, otherwise it stores 0. If the file system
does not support records, then the system end of line (i.e. <CR><LF> for DOS,
<LF> for Unix) is used for the end of record. This routine should convert every end
of line (i.e. <CR><LF> for DOS, <LF> for Unix) to an end of record, i.e. store 1 in
eorPtr when the end of line character(s) have been read; the end of line character(s)
themselves should not be copied into the buffer pointed to by bufferPtr.

To indicate that end of file was reached, this routine stores 0 in eorPtr, and returns
0 to indicate that no characters were read. Note that if 1 is stored in eorPtr, this does
not indicate end of file, since when a blank line consisting of nothing but the end of
line characters (i.e. <CR><LF>)occurs in the middle of an ASCII text file, this routine
returns 0 to indicate that no characters were read (since the end of line characters
are stripped out and are not copied into the buffer pointed to by bufferPtr) and
stores 1 in eorPtr to indicate end of record.
Parameters

Parameter Description
 userDataPtr Pointer to user data structure as returned by tfFSUserLogin
fileDataPtr Pointer to file data structure as returned by tfFSOpenFile.
 bufferPtr Pointer to buffer where to copy the data from the file.
 bufferSize Size in bytes of the buffer.
 eorPtr Pointer to end of record

Returns
 Value Meaning
> 0 Number of copied bytes (not including end of record)
0 End of file has been reached
-1 Failure

Application Reference

6.99

tfFSRemoveDir

#include <trsocket.h>

int tfFSRemoveDir
(
void * userDataPtr,
char * pathNamePtr
);

Function description
Given the unique user data pointer as returned by tfFSUserLogin, and a directory
name, this function removes the directory.

Parameters
Parameter Description
userDataPtr Pointer to user data structure as

returned by tfFSUserLogin
pathNamePtr Pointer to a null terminated string

containing directory path name.

Returns
Value Meaning
 0 Success
 -1 Failure

Turbo Treck Real-Time TCP/IP User’s Manual

6.100

tfFSRenameFile

#include <trsocket.h>

int tfFSRenameFile
(
void * userDataPtr,
char * fromPathNamePtr,
char * toPathNamePtr
);

Function description
Given the unique user data pointer as returned by tfFSUserLogin, a current file
name, and a new file name, this function renames the file to the new file name.

Parameters
Parameter Description
userDataPtr Pointer to user data structure as

returned by tfFsUserLogin
fromPathNamePtr Pointer to null terminated string

containing current file name
 toPathNamePtr Pointer to null terminated string

containing new file name

Returns
Value Meaning
 0 Success
-1 Failure

Application Reference

6.101

tfFSStructureMount

#include <trsocket.h>

int tfFSStructureMount
 (
void * userDataPtr,
char * pathNamePtr
)

Function description
Given the unique user data pointer as returned by tfFSUserLogin and a file system,
this function mounts the user to the new file system.

Parameters
Parameter Description
 userDataPtr Pointer to user data structure as

returned by tfFsUserLogin.

pathNamePtr Pointer to a null terminated string
containing a file system name

Returns
Value Meaning
0 0
-1 Failure

Turbo Treck Real-Time TCP/IP User’s Manual

6.102

tfFSSystem

#include <trsocket.h>

int tfFSSystem
(
char * bufferPtr,
int bufferSize
);

Function description
This function copies the official system name, as assigned in the list of OPERATING
SYSTEM NAMES” in the “Assigned Numbers” RFC (RFC 1700) into bufferPtr (up
to bufferSize bytes). For example, the DOS operating system has been assigned
DOS as system name. If the file system is a DOS file system, then this function
should copy “DOS” into bufferPtr. If the system has not been assigned a system
name in the RFC, then this function should return -1.

Parameters
Parameter Description
 bufferPtr Pointer to a buffer where to copy

the system name
 bufferSize Size in bytes of the buffer

Returns
Value Meaning
 -1 Failure
 > 0 Number of bytes copied

Application Reference

6.103

tfFSUserAllowed

#include <trsocket.h>

int tfFSUserAllowed
(
char * userNamePtr
);

Function description

This function verifies whether a user is allowed on the system.

Parameters
Parameter Description
userNamePtr Pointer to a null terminated string

containing the user name
Returns

Value Meaning
 0 Success
-1 User is not allowed on the system

Turbo Treck Real-Time TCP/IP User’s Manual

6.104

tfFSUserLogin

#include <trsocket.h>

void * tfFSUserLogin
(
char * userNamePtr,
char * passwordPtr
);

Function description
When given a User name string and Password string, this function returns a unique
user data pointer (if password is correct, it returns a Null pointer otherwise). The
just allocated user data pointer points to a data structure containing information
unique to the just logged in current user, such as its current working directory.

Parameters
Parameter Description
userNamePtr Pointer to a null terminated string

containing the user name
passwordPtr Pointer to a null terminated string

containing the password
Returns

Value Meaning
(void *)0 Failure
userDataPtr Pointer to a unique user data

structure containing information
about the given user (such as its
working directory.)

Application Reference

6.105

tfFSUserLogout

#include <trsocket.h>

void tfFSUserLogout
(
void * userDataPtr
);

Function Description
Given the unique user pointer as returned by tfFSUserLogin, this function logs the
user out and frees the structure pointed to by userDataPtr.

Parameters
Parameter Description
userDataPtr Pointer to the user data structure as

returned by tfFSUserLogin

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

6.106

tfFSWriteFile

#include <trsocket.h>

int tfFSWriteFile
(
void * userDataPtr,
void * fileDataPtr,
char * bufferPtr,
int bytes
)

Function description
Given the unique user data pointer as returned by tfFSUserLogin and a file data
pointer as returned by tfFSOpenFile, this function writes bytes from the buffer
pointed to by bufferPtr to the file.

 Parameters
Parameter Description
 userDataPtr Pointer to user data structure as

returned by tfFSUserLogin
 fileDataPtr Pointer to file data structure as

returned by tfFSOpenFile
 bufferPtr Pointer to buffer data to copy into

the file
bytes Size in bytes of the data in the

buffer
Returns

Value Meaning
 0 Success
 -1 Failure

Application Reference

6.107

tfFSWriteFileRecord

#include <trsocket.h>

int tfFSWriteFileRecord
(
void * userDataPtr,
void * fileDataPtr
char * bufferPtr,
int bytes,
int eor
)

Function description
Given the unique user data pointer as returned by tfFSUserLogin and a file data
pointer as returned by tfFSOpenFile, this function writes up to bytes from the
buffer, in addition to an end of record if EOR is set to 1. If the file system does not
support records, then the system end of line (i.e. <CR><LF> for DOS, <LF> for
Unix) should be used instead of EOR.

Parameters

Parameter Description
userDataPtr Pointer to user data structure as

returned by tfFSUserLogin
 fileDataPtr Pointer to file data structure as

returned by tfFSOpenFile.
 bufferPtr Pointer to buffer data to copy into

the file
 bytes Size in bytes of the data in the

buffer
 eor End of record indicator (1 if end of

record need to be written)

Returns
Value Meaning
 0 Success
-1 Failure

Turbo Treck Real-Time TCP/IP User’s Manual

6.108

Telnet Daemon
Description
The TELNETD Application Program Interface allows the user to run
a TELNET server. It consist of 2 parts:

User to Telnet server interface:
The user to Telnet interface allows the user to start/stop the Telnet server
to allow/stop remote telnet clients to connect and login on the server. It also allows
the user to send data to each connected telnet client.

Telnet server to user interface:
The Telnet server to user interface allows the telnet server to notify the
user of incoming connections. It also allows the telnet server to hand
data received from each connected telnet client to the user, after the
NVT conversion has been performed by the telnet server.

User to Telnet server interface
Five calls are provided in the user to telnet server interface:

tfTeldUserStart
The user calls tfTeldUserStart, to open a TELNET server socket and start
listening for incoming connections. tfTeldUserStart can be either blocking
or non blocking, as specified by its last parameter.

Blocking Mode
In blocking mode, tfTeldUserStart should be called from a task.
tfTeldUserStart will not return unless an error occurs, will block, wait
for incoming connections, and execute the Telnet server code in the context of
the calling task. Choose the blocking mode, if you are using an RTOS/Kernel.

Non-Blocking Mode
In non-blocking mode, tfTeldUserStart will return immediately after
listening for incoming connections. It is the user responsibility to then
call tfTeldUserExecute periodically to execute the Telnet server code. Choose
the non-blocking mode, if you do not have an RTOS/Kernel.

tfTeldUserExecute
If the user calls tfTeldUserStart in non-blocking mode, then the user
must call tfTeldUserExecute periodically. If the user calls tfTeldUserStart in blocking
mode, then there is no need to call tfTeldUserExecute

Application Reference

6.109

tfTeldUserStop
The user calls tfTeldUserStop to close the telnet server socket and kill
all existing Telnet connections.

tfTeldUserSend
The user calls tfTeldUserSend to send data to a specified telnet client.
The telnet server will perform the NVT conversion before sending the
data on the network.

tfTeldUserClose
The user calls tfTeldUserClose to force the server to close a specified
telnet connection.

Telnet server to user interface

tfTeldOpened
Call provided by the user, and called by the telnet server.
The telnet server calls tfTeldOpened to inform the user that a specified
telnet client has established a new connection to the telnet server.

tfTeldIncoming
Call provided by the user, and called by the telnet server. The telnet server calls
tfTeldIncoming to give data received from a specified telnet client, to the user. The
telnet server performs the NVT conversion before handing the data to the user.

tfTeldClosed
Call provided by the user, and called by the telnet server. The telnet server calls
tfTeldClosed to inform the user that a specified telnet client closed the connection.

Turbo Treck Real-Time TCP/IP User’s Manual

6.110

tfTeldClosed

#include <trsocket.h>

void tfTeldClosed
(
ttUserTeldHandle teldHandle
);

Function description
The user provides this function. It is called from the telnet server to let the user
know that the telnet client has closed the telnet connection.

Parameters
Parameter Description
 teldHandle Unique identifier for a telnet

connection
Returns

Nothing

Application Reference

6.111

tfTeldIncoming

#include <trsocket.h>

int tfTeldIncoming
(
ttUserTeldHandle teldHandle,
char * teldRecvBufPtr,
int teldBytes,
int eolFlag
);

Function description
The user provides this function. It is called from the telnet server to pass incoming
data from the specified telnet client to the user. If eolFlag is non-zero, then the
sequence <CR, LF> or <CR, NUL> has been received in ASCII mode, or <IAC,
EOR> in binary mode. The user should copy all the data to their own buffers. If
there is not enough room, the user should return TM_EWOULDBLOCK, and the
telnet server will try to call this routine again later.

Parameters
Parameter Description
teldHandle Unique identifier for a telnet

connection
teldRecvBufPtr Pointer to buffer containing

received data
teldBytes Number of bytes in the receive

buffer
eolFlag End of line flag, 1 to indicate EOL, 0

otherwise

Returns
 Value Meaning
TM_ENOERROR User had room for the data and

copied it in its buffer
TM_EINVAL Invalid Telnet Handle
TM_EWOULDBLOCK User did not have enough room for

all the data. No data has been
copied

Turbo Treck Real-Time TCP/IP User’s Manual

6.112

tfTeldOpened

#include <trsocket.h>

void tfTeldOpened
(
ttUserTeldHandle teldHandle,
struct sockaddr_in * sockAddrPtr
);

Function description
The user provides this function. It is called from the telnet server to let the user
know that a telnet client has established a new connection to the telnet server.

Parameters
Parameter Description
teldHandle Telnet handle, Unique identifier for

a telnet connection
 sockAddrPtr Pointer to a sockaddr_in structure

containing the IP address of the
telnet client

Returns
Nothing

Application Reference

6.113

tfTeldSendQueueBytes
#include <trsocket.h>

int tfTeldSendQueueBytes
(
ttUserTeldHandle teldHandle
);

Function Description
This function returns the number of bytes currently in the TCP socket send
queue for the Telnet session identified by teldHandle.

Parameters
Parameter Description
teldHandle Telnet handle, unique identifier for a

telnet connection.

Returns
Value Meaning
>= 0 The number of bytes currently in

the TCP socket send queue for the
specified Telnet session.

-1 An error occurred. Invalid telnet
handle specified.

Turbo Treck Real-Time TCP/IP User’s Manual

6.114

tfTeldSendQueueSize

#include <trsocket.h>

int tfTeldSendQueueSize
(
ttUserTeldHandle teldHandle
);

Function Description
This function returns the total size of the TCP socket send queue for the Telnet
session identified by teldHandle.

Parameters
Parameter Description
teldHandle Telnet handle, unique identifier for a

telnet connection.

Returns
Value Meaning
>= 0 The total size of the TCP socket

send queue for the specified Telnet
session.

-1 An error occurred. Invalid telnet
handle specified.

Application Reference

6.115

tfTeldUserClose

#include <trsocket.h>

int tfTeldUserClose
(
ttUserTeldHandle teldHandle
);

Function description
This function allows the user to force the telnet server to close the specified telnet
connection

Parameters
Parameter Description
 teldHandle Telnet handle, Unique identifier for

a telnet connection

Returns
Value Meaning
TM_ENOERROR Success
TM_EINVAL Invalid Telnet Handle

Turbo Treck Real-Time TCP/IP User’s Manual

6.116

tfTeldUserExecute

#include <trsocket.h>

int tfTeldUserExecute
(
void
);

Function description
The function executes the TELNET server (non blocking mode only) main loop.
This is to be used only if tfTeldUserStart had been called in non-blocking mode.

Parameters
None

Returns
Value Meaning
TM_ENOERROR Success
TM_EPERM Telnet server currently executing, or

had not been started, or has been
stopped

Application Reference

6.117

tfTeldUserSend

#include <trsocket.h>

int tfTeldUserSend
(
ttUserTeldHandle teldHandle,
char * teldSendBufPtr,
int teldBytes,
int flag
);

Function description
This function is called to give data to the telnet server to send it to the telnet client.

Flag values:
If the flag value is TM_TELD_SEND_EOL, it indicates that end of command has
been reached and means that the telnet server needs to append <CR, LF> in ASCII
mode, or <IAC, EOR> in binary mode to the user data. If the flag value is
TM_TELD_SEND_COMMAND, it indicates that the user is sending a TELNET
IAC command, and that the Turbo Treck Telnet server should treat the data as a
command, and not map the IAC character.
Flow control:
If the Turbo Treck server does not have enough room for the data, it will not copy
the data and return TM_EWOULBLOCK. The caller should try and re-send the
data at a later time.

Parameters
Parameter Description
teldHandle Telnet handle, Unique identifier for a telnet

connection
teldSendBufPtr Pointer to user send buffer containing the

data.
teldBytes Number of bytes in teldSendBuf to be sent
flag Flag:

TM_TELD_SEND_EOL to indicate that an
EOL should be sent
TM_TELD_SEND_COMMAND to
indicate that the user is sending a Telnet
IAC command, and not data

Turbo Treck Real-Time TCP/IP User’s Manual

6.118

 Returns
Value Meaning
TM_ENOERROR Success
TM_ENOBUFS Failed to allocate a buffer to copy

the send data into
TM_EINVAL Invalid Telnet Handle
TM_EWOULDBLOCK User did not have enough room for

all the data

Application Reference

6.119

 tfTeldUserStart

#include <trsocket.h>

int tfTeldUserStart
(
int telnetOptionsAllowed,
int maxConnections,
int maxBackLog,
int blockingState
);

Function description
This function opens a TELNET server socket and start listening for incoming
connections.

tfTeldUserStart can be either blocking or non-blocking, as specified by its
blockingState parameter.

Blocking Mode
In blocking mode, tfTeldUserStart is to be called from a task.
tfTeldUserStart will not return unless an error occurs. It will block and
wait for incoming connections, and execute the telnet server code in the
context of the calling task. Choose the blocking mode, if you are using
an RTOS/Kernel.

Non-Blocking Mode
In non-blocking mode, tfTeldUserStart will return immediately after
listening for incoming connections. It is the user’s responsibility to
then call tfTeldUserExecute periodically to execute the telnet server
code. Choose the non-blocking mode, if you do not have an RTOS/Kernel.

Turbo Treck Real-Time TCP/IP User’s Manual

6.120

Parameters
Parameter Description
 telnetOptionsAllowed Indicates which options we allow the

client to negotiate. The user can OR
together TM_TELD_BINARY_ON
and TM_TELD_ECHO_ON to allow
binary transfer, and echo by the server
respectively.

 maxConnections Maximum number of concurrent
accepted incoming telnet connections
allowed. If zero, then the telnet server
will accept as many connections as
there are available sockets.

maxBackLog Maximum number of concurrent pending
(before being accepted) incoming telnet
connections allowed.

 blockingState TM_BLOCKING_ON for blocking mode,
TM_BLOCKING_OFF for non-blocking
mode.

Returns
Value Meaning
TM_ENOERROR Success
TM_EINVAL Incorrect telnet options flag,

maxConnections is either negative (if
non-zero exceeds or equals the current
number of available telnet connections),
or blockingState is neither
TM_BLOCKING_ON, nor
TM_BLOCKING_OFF

TM_EALREADY tfTeldUserStart has already been called
TM_EMFILE There are no more socket available to

open the telnet server listening socket

TM_ENOBUFS Insufficient user memory available to
complete the operation

TM_EADDRINUSE The telnet server port is already in use.
TM_ENOMEM Could not obtain a counting semaphore

to be used for blocking the telnet server
(blocking mode only).

Application Reference

6.121

tfTeldUserStop

#include <trsocket.h>

int tfTeldUserStop
(
void
);

Function description
This function stops execution of the telnet server by closing the listening socket
and killing all existing connections.

Parameters
None

Returns
Value Meaning
TM_ENOERROR Success
TM_EALREADY The telnet server has already been

stopped

Turbo Treck Real-Time TCP/IP User’s Manual

6.122

Turbo Treck Test Suite
Description
The Turbo Treck stack includes a module that allows you to perform a variety of
tests on your system. These tests are outlined below:

UDP Tests
TM_TEST_UDP_SEND Sends UDP data to a remote server.
TM_TEST_UDP_RECV Receives data from a remote client.
TM_TEST_UDP_ECHO_CLIENT Sends UDP data to a remote echo server,

and waits for the server to echo it back.
TM_TEST_UDP_ECHO_SERVER Receives UDP data from a remote client,

and echoes this data back to the client
TCP Tests
TM_TEST_TCP_SEND Sends TCP data to a remote server.
TM_TEST_TCP_RECV Receives TCP data from a remote client.
TM_TEST_TCP_ECHO_CLIENT Connects to a remote server, and sends

data to it, waiting for the server to echo it
back.

TM_TEST_TCP_ECHO_SERVER Accepts connections from remote peers.
Receives TCP data and echoes it back to
the client

TM_TEST_TCP_CONNECT Repeatedly connects, and then discon-
nects from a TCP server.

Miscellaneous Tests
TM_TEST_LOCK Verify that the Turbo Treck locking

mechanism are set up and are functioning
properly.

The behavior of these tests is modified by various flags:

TM_TEST_FLAG_ZEROCOPY Send and receive data using the Turbo
Treck zero copy extensions rather than
the standard sockets calls (eg,
tfZeroCopySend rather than send)

TM_TEST_FLAG_NONBLOCKING Causes the test suite to run in non-
blocking mode. This should be used if
no kernel is available on your system.

TM_TEST_FLAG_UDP_CONNECT Rather than using the standard UDP
(sendto, recvfrom) API, call ‘connect’ and
use the TCP calls (eg, send, recv).

Application Reference

6.123

TM_TEST_FLAG_UDP_CS_OFF Disable UDP checksums. Checksums are
enabled by default.

TM_TEST_FLAG_TCP_NODELAY Sets the TCP_NO_DELAY option for this
test. This causes TCP to send data
immediately rather than delaying until
more data is sent.

TM_TEST_FLAG_FILL_DATA This flag causes all outgoing data to be
set to a repeating incremental pattern
(0x00, 0x01, etc) before being sent.

TM_TEST_FLAG_VALIDATE Verify that all incoming data is as
expected (ie, as
TM_TEST_FLAG_FILL_DATA sets it –
see above).

TM_TEST_FLAG_RANDOM Choose random values for various
parameters.

Turbo Treck Real-Time TCP/IP User’s Manual

6.124

Blocking Mode
The Turbo Treck test suite may be run in either blocking or non-blocking mode.
In blocking mode, the tfTestTreck function will return either when the test has
successfully completed, or when an error has occurred. In non-blocking mode,
tfTestTreck simply initiates the test. This function returns immediately, returns a
session handle to the user, and returns the result code TM_EWOULDBLOCK.

After the test is started, the user should call tfTestUserExecute in their main loop
to execute an iteration of the test. This function will return
TM_EWOULDBLOCK if the test is still in progress; any other return code
indicates that the test is complete and the user should no longer call
tfTestUserExecute.

For instance, a non-blocking test’s main loop may look something like:

ttUserTestHandle testHandle;
int testStarted;

testStarted = 0;
while (1)
{

 if (testStarted == 0)
 {

/*
* Attempt to send 25 UDP buffers, of 500 bytes each, to
* remote host 10.0.1.5 at port 9. This should be done in

* non-blocking mode, * using the Turbo Treck Zero
* Copy socket extensions.

 */
 errorCode = tfTestTreck(TM_TEST_UDP_SEND,

 “10.0.1.5”,
 htons(9),
 500,
 25,
 TM_TEST_FLAG_NONBLOCKING |

TM_TEST_FLAG_ZEROCOPY,
 &testHandle,
 0);

 testStarted = 1;
 }
 else
 {
 errorCode = tfTestUserExecute(testHandle);
 if (errorCode != TM_EWOULDBLOCK)
 {
/* TEST COMPLETE! */

 }

Application Reference

6.125

 }

 tfTimerExecute();

 if (tfCheckInterface(interfaceHandle) == TM_ENOERROR)
 {
 tfRecvInterface(interfaceHandle);
 }

}

Data validation
There are two flags that can be used to validate that incoming and outgoing data
is correct. TM_TEST_FLAG_FILL_DATA will fill any outgoing data with any
incrementing byte pattern of 0x00, 0x01 … 0xFF. The remote host receiving data
can then validate that the incoming data matches this pattern.

The flag TM_TEST_FLAG_VALIDATE performs the inverse operation: it verifies
that any received data matches this 0x00, 0x01 … 0xFF pattern. If any validation
fails, the test will return with a TM_EIO error code.

These two flags can be used in a variety of ways to validate data. For instance, if
an echo test is being performed, setting both of these flags will verify that both
incoming and outgoing data is correct. Another example application of these
flags is when the Turbo Treck test suite is being run between two devices, one
device could run the TM_TEST_TCP_SEND test with the
TM_TEST_FLAG_FILL_DATA option set, and the other device could run the
TM_TEST_TCP_RECV test with the TM_TEST_FLAG_VALIDATE option set,
and vice versa.

Random testing mode
When the TM_TEST_FLAG_RANDOM option is set, tfTestTreck will execute a
random client test, with random parameters. The test type is chosen from the set
of send send tests (TM_TEST_UDP_SEND, TM_TEST_TCP_SEND), echo tests
(TM_UDP_ECHO_CLIENT, TM_TCP_ECHO_CLIENT) and the TCP connect
test (TM_TEST_TCP_CONNECT). If a send or TCP connect test is chosen, it
will send data to port 9 of the remote host; if an echo test is chosen it will echo
data with port 7. The test will be executed the number of times specified in the
parameter testCount.
A random data length is also chosen and is no larger than the data length
specified in parameter dataSize. Unless IP fragmentation is enabled, the data
length should be no larger than the MTU of the device, less the space for the
UDP & IP headers (1472 for Ethernet, as well as most other link layers) in case a
UDP test is chosen.

Random options (flags) are chosen appropriately for the selected test. The
exception to this is the TM_TEST_FLAG_NONBLOCKING flag which remains
set to the value passed in by the user.

Turbo Treck Real-Time TCP/IP User’s Manual

6.126

Locking test
This test operates differently than the rest of the test suite, due to the way that
locks work. This test is only run once. If locks are working correctly, the user
will receive a message via tfKernelWarning and if locks fail, tfKernelError will
be called. For this test to operate, the macro TM_ERROR_CHECKING must be
defined in your trsystem.h file.

tfTestTreck

#include <trsocket.h>

int tfTestTreck
(
int testType,
char ipAddrStr,
int portNumber,
int dataSize,
unsigned long testCount,
unsigned long flags,
ttUserTestHandlePtr sessionHandlePtr,
void testParam
);

Function description
Performs a network test according to the specified parameters. Not all parameters
are meaningful for all tests. For instance, dataSize has no meaning when the test
type is TM_TEST_TCP_CONNECT since no data is being sent and testType is
not used when the TM_TEST_FLAG_RANDOM option is chosen since the test
type is selected at random.

 Parameters
Parameter Description
testType The type of test to perform (see

above).
ipAddrStr String containing the IP address of

the remote host (eg, “10.0.1.5”)
portNumber Port on the remote host to perform

the test against.
dataSize Data buffer size for this test (eg, the

size of the UDP datagram to send,
or the amount of data to receive)

testCount The number of times to execute this
test

Application Reference

6.127

flags Options to apply to this test (see
above)

sessionHandlePtr Pointer to a test session handle.
Used in non-blocking mode to
return a session handle to be used
with tfTestUserExecute. Not used
in blocking mode.

testParam Not currently used.

Returns
Value Meaning
TM_EINVAL Invalid test type specified
TM_EINVAL No session handle pointer specified

in non-blocking mode.
TM_ENOERROR Test completed successfully
TM_EWOULDBLOCK Returned when the test is run in

non-blocking mode. The user
should call tfTestUserExecute with
the value specified in
*sessionHandlePtr to continue the
test

TM_EIO Incoming data failed validation

Turbo Treck Real-Time TCP/IP User’s Manual

6.128

Optional Protocols

7.1

Optional Protocols

Turbo Treck Real-Time TCP/IP User’s Manual

7.2

PPP Interface
tfChapRegisterAuthenticate
tfGetPppDnsIpAddress
tfGetPppPeerIpAddress
tfPapRegisterAuthenticate
tfPppSetOption
tfSetPppPeerIpAddress
tfUseAsyncPpp
tfUseAsyncServerPpp

Optional Protocols
Function List

AutoIP Configuration
tfAutoIPPickIpAddress
tfCancelCollisionDetection
tfConfigAutoIp
tfUseCollisionDetection
tfUserStartArpSend

 BOOTP Automatic Configuration
tfConfGetBootEntry
tfUseBootp

BOOTP relay agent
tfStartBootRelayAgent
tfStopBootRelayAgent

DHCP Automatic Configuration
tfConfGetBootEntry
tfUseDhcp

DHCP User configured
tfDhcpUserGetBootEntry
tfDhcpUserRelease
tfDhcpUserStart

Dialer
tfDialerAddExpectSend
tfDialerAddSendExpect
tfUseDialer

IGMP API
drvIoctlFunc
tfSetMcastInterface

NAT
tfNatConfig
tfNatUnConfig
tfNatConfigNapt
tfNatConfigInnerTcpServer
tfNatConfigInnerUdpServer
tfNatConfigInnerFtpServer
tfNatConfigStatic
tfNatConfigDynamic
tfNatConfigMaxEntries
tfNatDump

Optional Protocols

7.3

AUTO IP Configuration
Description
The AUTO IP configuration APIs allow the user to configure the interface with
an AUTO IP address, without having to pick a specific IP address. The IP
address will automatically be selected in the AUTO IP v4 address range, i.e. IP
addresses between 169.254.1.0, and 169.254.254.255.
To configure an interface with an AUTO IP address:

1. Starting the configuration: The user need to call tfOpenInterface,
using a zero IP address, zero IP netmask, and setting the
TM_DEV_IP_USER_BOOT flag in the flags parameter, as shown in the
example below. Note that if the interface had already been opened on
multi home index 0, and not closed, this step can be omitted.

2. Selecting an IP address, and starting the collision detection: Next the
user need to call tfAutoIpPickIpAddress to pick an AUTO IP address,
then call tfUseCollisionDetection, passing that IP address, and a call
back function, information that will be stored in the Turbo Treck stack.
Next the user need to call tfUserStartArpSend so that the Turbo Treck
stack can start sending ARP probes, to check for collisions on the IP
address. tfConfigAutoIp, provided as an example in
examples\txautoip.c, and described below does all this.

3. Finishing the configuration, or trying another IP address: The call
back function will be called if either a collision has been detected (non
zero errorCode), or when the timeout for sending the probes has expired
with no collision (zero errorCode). If no collision has been detected,
then the user should call tfFinishOpenInterface with the selected
AUTO IP address, if tfOpenInterface with the
TM_DEV_IP_USER_BOOT flag had been called earlier (mhome index 0
configuration, as shown in step 1), otherwise tfConfigInterface should
be called instead. If a collision has been detected, then the user should
cancel the collision detection (by calling tfCancelCollisionDetection on
the current IP address), and try another IP address, by calling
tfConfigAutoIp or similar function again. The tfAutoIpFinish call back
function provided as an example in examples\txautoip.c, and shown
below does all this. It also cancels the collision detection if no collision
occurred.

4. Monitoring the network for collision after finishing the configura-
tion: After the interface has been successfully configured, the user
should still monitor the network for collision. This could be done by not
canceling the collision detection in the call back function, and modify-
ing the call back function to handle a collision detection, when the
interface has been configured.

Turbo Treck Real-Time TCP/IP User’s Manual

7.4

Enabling AUTO IP
The following macro must be uncommented out in trsystem.h so that the AUTO
IP code can be enabled.
#define TM_USE_AUTO_IP

Example
 The following code sample can also be found in examples\txautoip.c
...
 errorCode = tfOpenInterface(interfaceHandle, 0, 0,

 TM_DEV_IP_USER_BOOT, 1, 0);

if (errorCode == TM_ENOERROR)
{

errorCode = tfConfigAutoIp (interfaceHandle, 0);
}

...

int tfConfigAutoIp(ttUserInterface interfaceHandle,
 int mhomeIndex)
{
 ttUserGenericUnion autoIpParam;
 ttUserIpAddress ipAddress;
 int errorCode;

 do
 {
/* Pick a random AUTO IP address */
 ipAddress = tfAutoIPPickIpAddress();
 if (ipAddress != (ttUserIpAddress)0)
 {
 autoIpParam.genIntParm = mhomeIndex;
/* Register the call back function for that IP address with
 * the stack
 */
 errorCode = tfUseCollisionDetection(ipAddress,
 tfAutoIpFinish,
 autoIpParam);

 }
 else
 {
 errorCode = TM_ENOENT;
 }
 } while (errorCode == TM_EADDRINUSE);
 if (errorCode == TM_ENOERROR)
 {
/* Selected AUTO IP address is not in the ARP cache */
/* Start sending ARP probes on the interface */
/* We use the default probe interval (2s), and number of
 * probes (4)
 */

Optional Protocols

7.5

 errorCode = tfUserStartArpSend (interfaceHandle,
 ipAddress, 0, 0, 0);

 }
 return errorCode;
}

int tfAutoIpFinish (ttUserInterface interfaceHandle,
 ttUserIpAddress ipAddress,
 int errorCode,
 ttUserGenericUnion autoIpParam)

{
 int mhomeIndex;

/* Cancel the collision detection check on that IP address */
 (void)tfCancelCollisionDetection(ipAddress);
 mhomeIndex = autoIpParam.genIntParm;
 if (errorCode == TM_ENOERROR)
 {
/* No collision occurred. Finish configuring the interface */
 tlConfigured = 1;
 if (mhomeIndex == 0)
 {
/* User used tfOpenInterface with TM_DEV_IP_USER_BOOT on
 * mhome index 0
 */
 errorCode = tfFinishOpenInterface(interfaceHandle,
 ipAddress,
 TM_IP_LOCAL_NETMASK);
 if (errorCode == TM_ENOERROR)
 {
 printf(“tfFinishOpenInterface with 0x%x\n”,
ipAddress);
 }
 else
 {
 printf(“tfFinishOpenInterface with 0x%x
failed ‘%s’\n”,
 ipAddress, tfStrError(errorCode));
 }
 }
 else
 {
/* User had already opened the interface on another mhome */
 errorCode = tfConfigInterface(interfaceHandle,
 ipAddress,
 TM_IP_LOCAL_NETMASK,
 0, /* not used. */
 1, /* has to be one */
 (unsigned

 char)mhomeIndex);

 if (errorCode == TM_ENOERROR)
 {
 printf(“tfConfigInterface with 0x%x\n”,

 ipAddress);

Turbo Treck Real-Time TCP/IP User’s Manual

7.6

 }
 else
 {
 printf(“tfConfigInterface with 0x%x failed ‘%s’\n”,
 ipAddress, tfStrError(errorCode));
 }
 }
 }
 else
 {
/* A collision occurred on the IP address, try another IP
 * address
 */
 tfConfigAutoIp(interfaceHandle, mhomeIndex);
 }
 return 0;
}

Optional Protocols

7.7

tfAutoIPPickIpAddress

#include <trsocket.h>

ttUserIpAddress tfAutoIPPickIpAddress
(
void
);

Description
Pick a valid AUTO IP v4 address in the AUTO IP IPv4 address pool, i.e. pick and
IP address between 169.254.1.0, and 169.254.254.255 that has not been picked in
the previous attempt to pick an IP address.

Parameters
None

Returns
Value Meaning
Non zero IP address Valid AUTO IP v4 address.
0 No valid AUTO IP v4 address was

found.

Turbo Treck Real-Time TCP/IP User’s Manual

7.8

tfCancelCollisionDetection

#include <trsocket.h>

int tfCancelCollisionDetection
(
ttUserIpAddress ipAddress
);

Function Description
Cancel a collision detection that had been registered with
tfUseCollisionDetection.

The user will pass the IP address that is being checked for collision.
tfCancelCollisionDetection will search the list of collision detection entries, and
remove the matching entry and timer if any. Collision detection for that IP
address will stop.

Parameters
Parameters Description
ipAddress IP address that is currently being

checked for collision.

Returns
Value Meaning
TM_ENOENT No collision detection entry

matching the IP address parameter
has been found.

TM_ENOERROR No error.

Optional Protocols

7.9

tfConfigAutoIp

#include <trsocket.h>

int tfConfigAutoIp
(
ttUserInterface interfaceHandle
int mhomeIndex
);

Function Description
This function is provided as an example.
tfConfigAutoIp picks an AUTO IP v4 address, and calls tfUseCollisionDetection
passing the selected IP address, a call back function (namely tfAutoIpFinish),
with a call back function parameter, specifying the selected mhome index. If
tfUseCollisionDetection is successful, that information will be stored in the
Turbo Treck stack. Next it calls tfUserStartArpSend using the default values for
the number of ARP probes (4), and ARP probe time interval (2 seconds), so that
the Turbo Treck stack can start sending ARP probes, to check for collisions on
the IP address.

Parameters
Parameters Description
interfaceHandle Interface on which to send the ARP

probe(s)/request(s).
mhomeIndex Multi home index of the IP address

to be configured on the interface

Returns
Value Meaning
TM_ENOENT Could not pick a valid IP v4 IP

address
TM_EALREADY tfUseCollisionDetection has

already been called for that IP
address.

TM_ENOBUFS Not enough memory to allocate a
collision detection entry or a timer.

TM_EPERM Interface is not a LAN interface, i.e.
ARP not permitted on that interface.

TM_ENXIO Interface has not been opened.
TM_ENOERROR No error.

Turbo Treck Real-Time TCP/IP User’s Manual

7.10

tfUseCollisionDetection

#include <trsocket.h>

int tfUseCollisionDetection
(
ttUserIpAddress ipAddress,
ttArpChkCBFunc userCbFunc,
ttUserGenericUnion userCbParam
);

Function Description
Allow the Turbo Treck stack to check that no other host is using a given IP
address. This command instructs the Turbo Treck stack to store the given IP
address, so that it can later on check for ARP requests, or replies coming from
any interface, not originated by this host, and whose ARP sender addresses are
the same as the given IP address. The collision detection will only start after the
user calls tfUserStartArpSend. The collision detection will continue until the
user calls tfCancelCollisionDetection. If the interface given by
tfUserStartArpSend is not configured yet, the Turbo Treck stack will also check
for ARP probes sent by other hosts. The user gives a call back function to be
called when a match on an ARP request, or ARP reply, or ARP probe, occurs.
The interface handle, passed to the call back function, is the interface handle
passed to the tfUserStartArpSend function. The call back function can also be
called if the timeout given to the tfUserStartArpSend expires before an ARP
request, or reply occurs.

The user will pass the IP address to check, a call back function, and a parameter
to be passed as is to the call back function.

• tfUseCollisionDetection will first check the ARP cache for a match on the
IP address to see whether another host is already using that IP address. If
a match is found, it will return TM_EADDRINUSE, to indicate that another
host is using the IP address. In that case the collision detection will stop
right away.

• tfUseCollistionDetection will add an entry for that IP address in the global
collision detection list. When incoming ARP requests, and replies come,
the ARP sender IP address will be checked for a match with this entry in
that list.

• If an ARP reply, or request, or probe (only if interface is not configured) is
received, while the IP address is being checked for collision, then the
Turbo Treck stack will call the call back function in the context of the recv
task, with TM_EADDRINUSE error code.

Optional Protocols

7.11

• If the tfUserStartArpSend timeout expires before the Turbo Treck stack
receives any ARP reply/request, then the Turbo Treck stack will call the
call back function in the context of the timer task, with the
TM_ENOERROR error code.

• Once started, the collision detection will stop only when the user calls
tfCancelCollisionDetection.

• The user can call tfUseCollisionDetection at any time, after tfStartTreck
has been called.

Parameters
Parameters Description
ipAddress IP address to check.
userCbFunc Call back function. Called by the

Turbo Treck stack when either an
ARP reply or ARP request has been
received whose source IP address
matches the above IP address. Also
called when a matching ARP probe is
received while the interface has not
been configured yet. Also called
when the tfUserStartArpSend
timeout expires. See userCbFunc
section below.

userCbParam Parameter to be passed as is to the
user call back function. See below.

Returns
Value Meaning
TM_EINVAL userCbFunc is NULL.
TM_EADDRINUSE Another host on the network has

been configured with the IP address.
(We found the ARP mapping in the
ARP cache.)

TM_EALREADY tfUseCollisionDetection has already
been called for that IP address.

TM_ENOBUFS Not enough memory to allocate a
collision detection entry.

TM_ENOERROR No error.

Turbo Treck Real-Time TCP/IP User’s Manual

7.12

userCbFunc call back function

The call back function will be called as follows:

int userCbFunc
(
ttUserInterface interfaceHandle,
ttUserIpAddress ipAddress,
int errorCode,
ttUserGenericUnion userCbParam
);

userCbFunc Parameters
userCbFunc Parameters Description
InterfaceHandle Interface as given to

tfUserStartArpSend.
ipAddress IP address to check for collision.
errorCode Status of the ARP IP address

collision detection. See below.
userCbParam Parameter as passed by the user to

tfUseCollisionDetection

errorCode Parameter Value userCbFunc is called
TM_EADDRINUSE An ARP reply, or ARP request, or

ARP probe (interface not config-
ured yet) has been received.
Collision detection will still con-
tinue, until the user calls
tfCancelCollisionDetection.

TM_ENOERROR The timeout period for sending
ARP requests/Arp probes expired.
See tfUserStartArpSend. Collision
detection will still continue, until
the user calls
tfCancelCollisionDetection.

Optional Protocols

7.13

tfUserStartArpSend

#include <trsocket.h>

int tfUserStartArpSend
(
ttUserInterface interfaceHandle,
ttUserIpAddress ipAddress,
int numberArpProbes,
ttUser32Bit arpProbeInterval,
ttUser32Bit timeout
);

Function Description
Start sending one or more ARP probes or ARP requests on a given interface.
If the interface is not configured yet with that IP address on any multi home, then
this command instructs the Turbo Treck stack to send one or more ARP probes.
An ARP probe is an ARP request with the sender net address set to zero.
If the interface has been configured with that IP address on one of its multi-
home, then this command instructs the Turbo Treck stack to send one or more
ARP requests with the configured IP address as the source address.
The user will pass the interface handle, the IP address to check for collision, a
maximum number of ARP probes/requests, the interval of time between ARP
probes/requests, and a timeout parameter. We send an ARP probe/request on the
interface(s) specified by the interface handle, create a timer, and return. If
numberArpProbes is bigger than one, then the Turbo Treck stack, in the context
of the timer task, will send (numberArpProbes – 1) additional ARP probes/
requests every time the arpProbeInterval expires.

• tfUseCollisionDetection has to be called before tfUserStartArpSend is
called.

• If a “matching” ARP reply/request/probe is received before all ARP
probes have been sent, the Turbo Treck stack will stop sending any more
ARP probes, cancel the timer, and call the user call back function with a
TM_EADDRINUSE error code. If a “matching” ARP reply/request is
received before all ARP requests have been sent, the Turbo Treck stack
will stop sending any more ARP probes, cancel the timer, and call the user
call back function with a TM_EADDRINUSE error code.

• When the timeout parameter expires, the Turbo Treck stack will stop
sending any more ARP probe(s) request(s), cancel the timer, and will call
the user call back function passed by the user in tfUseCollisionDetection,
with a TM_ENOERROR error code.

Turbo Treck Real-Time TCP/IP User’s Manual

7.14

Interface configuration

• tfUserStartArpSend can be called before the interface has been config-
ured with that IP address. In that case, the user has to have at least
opened the interface with another IP address first, or with a zero IP
address and the TM_DEV_IP_USER_BOOT flag. If the
TM_DEV_IP_USER_BOOT flag has been used to open the interface, then
the user need to use tfFinishOpenInterface to finish the configuration
with the selected IP address, when it is determined that no other host uses
that IP address.

• tfUserStartArpSend can be called, after the interface has been configured
with the IP address parameter. In that case ARP requests are being sent,
instead of ARP probes.

Parameters
Parameters Description
interfaceHandle Interface on which to send the ARP

probe(s)/request(s).
ipAddress Target IP address of the ARP

probe(s)/request(s). Sender IP
address of the ARP request(s).

arpProbeInterval Interval in milliseconds between
ARP probes/requests. If set to zero,
the default
TM_PROBE_INTERVAL (2000
milliseconds) is used for the probe
interval.

numberArpProbes Maximum number of ARP probes/
requests to send. Interval between
ARP requests is arpProbeInterval
in milliseconds. If set to zero,
TM_MAX_PROBE (4) is used
instead.

timeout Number of milliseconds to wait after
sending the first ARP probe/
request, and call the user call back
function set by the user with
tfUseCollisionDetection. If set to
zero, it will be set to the default
value of numberArpProbes *
arpProbeInterval.

Optional Protocols

7.15

Returns
Value Meaning
TM_EINVAL Invalid interface, or NULL interface

timeout is less than arpProbeInterval
* numberArpProbes

TM_ENOENT The user is not checking the IP
address for collision detection, i.e. the
user has not called
tfUseCollisionDetection before
calling tfUserStartArpSend.

TM_EALREADY tfUserStartArpSend has already been
called for that IP address, and has not
timed out yet.
tfUserStartArpSend has already been
called for that IP address, for a
different interface.

TM_ENOBUFS No memory to allocate a timer.
TM_EPERM Interface is not a LAN interface, i.e.

ARP not permitted on that interface.
TM_ENXIO Interface has not been opened.
TM_ENOERROR No error.

Turbo Treck Real-Time TCP/IP User’s Manual

7.16

BOOTP Automatic Configuration API

Description
The BOOTP user interface allows the user to query directly a BOOTP server, for IP
addresses that the user can use. The Turbo Treck stack allows the user to retrieve
the BOOTP addresses automatically. When the user configures an interface/
multihome, the Turbo Treck stack automatically queries a BOOTP server for an IP
address and parameters, and finishes configuring the interface/multihome with the
IP address, and default router given by the BOOTP server. Up to
TM_MAX_IPS_PER_IF multihomes per interface can be configured that way.

In that case, the following steps are needed (after having called linkLayerHandle
= tfUseEthernet ()):

interfaceHandle = tfAddInterface (namePtr, linkLayerHandle,
...);

errorCode = tfUseBootp (interfaceHandle, myNotifyFunction);

errorCode = tfOpenInterface (interfaceHandle,
 0UL,
 0UL,
 TM_DEV_IP_BOOTP,
 1);

Note that we have called tfOpenInterface with the TM_DEV_IP_BOOTP flag set.
(Note other flags such as TM_DEV_IP_FORW_ENB could be ORed to
TM_DEV_IP_BOOTP as needed.)

Note: The user must wait for the BOOTP configuration to complete. During the
wait, ensure tfTimerUpdate (or tfTimerUpdateIsr), and tfTimerExecute are
called.

Optional Protocols

7.17

Checking on completion of a BOOTP configuration

• Synchronous check: The user can make multiple calls to
tfOpenInterface to determine when the configuration has completed.
Additional calls to tfOpenInterface will return TM_EALREADY as
long as the BOOTP server has not replied. tfOpenInterface will return
TM_ENOERROR if the BOOTP server has replied and the configura-
tion has completed.

• Asynchronous check: To avoid this synchronous poll, the user can
provide a user call back function to tfUseBootp as shown above. This
function will be called upon completion of tfOpenInterface. The
notifyFunc is called when the interface/multi home index is config-
ured or if the BOOTP request timed out as follows:
myNotifyFunction(interfaceHandle, errorCode);
where errorCode is 0 if the configuration was successful, or
TM_ETIMEDOUT if the BOOTP request timed out.

BOOTP Configuration parameters

When the BOOTP configuration has completed successfully as shown above,
the user can retrieve the BOOTP configuration parameters by calling:

userBtEntryPtr = tfConfGetBootEntry(
 ethernetInterfaceHandle,
 multiHomeIndex);

If the BOOTP configuration has been successful, this function will return a
pointer to a boot structure (null otherwise).

The userBtEntryPtr is a pointer to a structure defined in trsocket.h.
In particular, the userBtEntryPtr will contain:

The allocated IP address in the field userBtEntryPtr->btuYiaddr.

The subnet mask in the field userBtEntryPtr->btuNetMask.

Default router entry in the field userBtEntryPtr->btuDefRouter.

Configuring additional BOOTP IP addresses on the same interface

To configure additional BOOTP IP addresses on the same interface (multi homing),
use tfConfigInterface instead of tfOpenInterface.

Turbo Treck Real-Time TCP/IP User’s Manual

7.18

tfConfGetBootEntry

#include <trsocket.h>

ttUserBtEntryPtr tfConfGetBootEntry
(
 ttUserInterface interfaceHandle,
 unsigned char multiHomeIndex
);

Function Description
Get a pointer to DHCP/BOOTP Conf BOOT entry (obtained while doing a
tfOpenInterface with either TM_DEV_IP_BOOTP, or TM_DEV_IP_DHCP).

If successfull, the function will return a pointer to a ttUserBtEntry structure as
defined in trsocket.h. In particular this structure will contain:

• The allocated IP address in the field btuYiaddr
• Default router entry in the field btuDefRouter
• Primary Domain name server btuDns1ServerIpAddress
• Secondary Domain name server btuDns2ServerIpAddress

Parameters
Parameter Description
interfaceHandle Ethernet interface handle
multiHomeIndex Multi home index of the ethernet

device
Returns

Value Meaning
userBtEntryPtr Pointer to a user boot entry as

defined in trsocket.h
(ttUserBtEntryPtr) 0 Failure. No DHCP address bound.

Optional Protocols

7.19

tfUseBootp

#include <trsocket.h>

int tfUseBootp
(
ttUserInterface interfaceHandle,
ttDevNotifyFuncPtr devNotifyFuncPtr
);

Function Description
This function is used to initialize the BOOTP client interface, and should be
called between tfAddInterface, and tfOpenInterface, to allow configuration using
the BOOTP client protocol. If the second parameter is non null, then upon
completion of tfOpenInterface, the function that it points to will be called.
Function prototype for the user supplied notify function:

void devNotifyFunc
(
ttUserInterface interfaceHandle,
int errorCode
);

This function will be called with the interfaceHandle passed to tfOpenInterface,
and with an error code value (which is zero on success).

Example of a call with a non-null second parameter:

Given interfaceHandle (as returned by tfAddInterface), and the user defined
interface notify function devNotifyFunc:

void devNotifyFunc(ttUserInterface interfaceHandle,
int 5. errorCode);

tfUseBootp (interfaceHandle, devNotifyFunc);

Example of a call with a null second parameter:

If the user does not wish to be notified of tfOpenInterface completion, then he
can use the predefined NULL function pointer:

tfUseBootp (interfaceHandle,
TM_DEV_NOTIFY_FUNC_NULL_PTR);

Turbo Treck Real-Time TCP/IP User’s Manual

7.20

Parameters
Parameter Description
interfaceHandle The interface handle as returned by

tfAddInterface
devNotifyFuncPtr A pointer to a function that will be

called upon completion of
tfOpenInterface for a BOOTP
configuration.

Returns
Value Meaning
0 Success
TM_EINVAL The interface handle parameter is

invalid.
TM_EMFILE Not enough sockets to open the

BOOTP client UDP socket
TM_ADDRINUSE Another socket is already bound to

the BOOTP client UDP port.

Optional Protocols

7.21

BOOTP relay agent
tfStartBootRelayAgent

#include <trsocket.h>

int tfStartBootRelayAgent
(
ttUserIpAddress ipAddress,
ttUserInterface interfaceHandle,
unsigned char multiHomeIndex
);

General description of a BOOTP relay agent
BOOTP and DHCP clients send out limited broadcasts messages to UDP port 67
(BOOTP server port) in order to get boot configuration from a BOOTP/DHCP server.
If the server is not on the same subnet as the client, the broadcast message will not
reach the server, since routers do not forward limited broadcasts. To avoid having
a BOOTP/DHCP server on every subnet, BOOTP relay agents have been designed
so that they can receive the limited broadcast message from the BOOTP or DHCP
client, and send it (with some modifications) to a BOOTP/DHCP server. The BOOTP
relay agent will also relay the replies from the BOOTP/DHCP server back to the
client.

Function Description
This function is called to start the BOOTP relay agent to relay both BOOTP and
DHCP requests to the specified remote server IP address from the specified
interface handle, multihome index.

Parameters
Parameter Description
ipAddress IP address of the remove server. A

limited broadcast address can also
be specified (0xFFFFFFFF).

interfaceHandle Interface through which to relay
BOOTP and DHCP client requests.

multiHomeIndex Multi home index of the interface
through which to relay BOOTP and
DHCP client requests.

Turbo Treck Real-Time TCP/IP User’s Manual

7.22

Returns
Value Meaning
0 Success
TM_EINVAL Invalid interface handle, or multi

home index, or invalid IP address.
TM_EMFILE Not enough sockets to open the

BOOTP relay agent UDP socket
TM_ADDRINUSE Another socket is already bound to

the BOOTP relay agent UDP port.
TM_EALREADY tfStartBootRelayAgent has already

been called successfully.

Optional Protocols

7.23

tfStopBootRelayAgent

#include <trsocket.h>

int tfStopBootRelayAgent
(
void
);

Function Description
This function is called to stop the BOOTP relay agent. This will close the UDP
BOOTP relay agent UDP socket.

Parameters
None

Returns
Value Meaning
0 Success
TM_EALREADY tfStopBootRelayAgent has already

been called successfully.

Turbo Treck Real-Time TCP/IP User’s Manual

7.24

DHCP Automatic Configuration API
Description
The DHCP user interface allows the user to query directly a DHCP server, for IP
addresses that the user can use. The Turbo Treck stack allows the user to retrieve
the DHCP addresses automatically.

When the user configures an interface/multihome, the Turbo Treck stack
automatically queries a DHCP server for an IP address and parameters, and finishes
configuring the interface/multihome with the IP address and default router given by
the DHCP server. Up to TM_MAX_IPS_PER_IF multihomes per interface can be
configured that way.

In that case, the following steps are needed (after having called linkLayerHandle
= tfUseEthernet ()):

interfaceHandle = tfAddInterface (namePtr,
 linkLayerHandle,
 ...);

errorCode = tfUseDhcp (interfaceHandle, myNotifyFunction);

errorCode = tfOpenInterface (interfaceHandle,
 0UL,
 0UL,
 TM_DEV_IP_DHCP,
 1);

Note that we have called tfOpenInterface with the TM_DEV_IP_DHCP flag set.
(Note other flags such as TM_DEV_IP_FORW_ENB could be ORed to
TM_DEV_IP_DHCP as needed.).

Note: The user needs to wait for the DHCP configuration to complete. During
the wait, ensure tfTimerUpdate (or tfTimerUpdateIsr), and tfTimerExecute get
called.

Optional Protocols

7.25

Checking on completion of an automatic DHCP configuration

• Synchronous check: The user can make multiple calls to
tfOpenInterface to determine when the configuration has completed..
Additional calls to tfOpenInterface will return TM_EALREADY as
long as the DHCP server has not replied. tfOpenInterface will return
TM_ENOERROR, if the DHCP server has replied and the configura-
tion has completed.

• Asynchronous check: To avoid this synchronous poll, the user can
provide a user call back function to tfUseDhcp as shown above. This
function will be called upon completion of tfOpenInterface. The
notifyFunc is called when the interface/multi home index is config-
ured or if the DHCP request timed out as follows:
myNotifyFunction(interfaceHandle, errorCode); where errorCode is 0
if the configuration was successful, or TM_ETIMEDOUT if the DHCP
request timed out.

Automatic DHCP Configuration parameters

When the DHCP configuration has completed successfully as shown above, the
user can retrieve the DHCP configuration parameters by calling:

userBtEntryPtr = tfConfGetBootEntry(
 ethernetInterfaceHandle,
 multiHomeIndex);

If the DHCP configuration has been successful, this function will return a pointer
to a boot structure (null otherwise).

The userBtEntryPtr is a pointer to a structure defined in trsocket.h.
In particular, the userBtEntryPtr will contain:

The allocated IP address in the field userBtEntryPtr->btuYiaddr.
The subnet mask in the field userBtEntryPtr->btuNetMask.
Default router entry in the field userBtEntryPtr->btuDefRouter.
Primary Domain name server userBtEntryPtr->btuDns1ServerIpAddress
Secondary Domain name server userBtEntryPtr->btuDns2ServerIpAddress

Configuring additional automatic DHCP IP addresses on the same interface
To configure additional automatic DHCP IP addresses on the same interface (multi
homing), use tfConfigInterface instead of tfOpenInterface.

Turbo Treck Real-Time TCP/IP User’s Manual

7.26

tfConfGetBootEntry

#include <trsocket.h>

ttUserBtEntryPtr tfConfGetBootEntry
(
 ttUserInterface interfaceHandle,
 unsigned char multiHomeIndex
);

Function Description
Get a pointer to DHCP/BOOTP Conf BOOT entry (obtained while doing a
tfOpenInterface with either TM_DEV_IP_BOOTP, or TM_DEV_IP_DHCP).

If successfull, the function will return a pointer to a ttUserBtEntry
structure as defined in trsocket.h. In particular this structure
will contain:

 The allocated IP address in the field btuYiaddr
 Default router entry in the field btuDefRouter
 Primary Domain name server btuDns1ServerIpAddress
 Secondary Domain name server btuDns2ServerIpAddress

Parameters
Parameter Description
interfaceHandle Ethernet interface handle
multiHomeIndex Multi home index of the ethernet

device
Returns

Value Meaning
userBtEntryPtr Pointer to a user boot entry as de-

fined in trsocket.h
(ttUserBtEntryPtr) 0 Failure. No DHCP address bound.

Optional Protocols

7.27

tfUseDhcp

#include <trsocket.h>

int tfUseDhcp
(
ttUserInterface interfaceHandle,
ttDevNotifyFuncPtr devNotifyFuncPtr
);

Function Description
This function is used to initialize the DHCP client interface, and should be called
between tfAddInterface, and tfOpenInterface, to allow configuration using the
DHCP client protocol. If the second parameter is non null, then upon completion
of tfOpenInterface, the function that it points to will be called.
Function prototype for the user supplied notify function:

void devNotifyFunc
(
ttUserInterface interfaceHandle,
int errorCode
);

This function will be called with the interfaceHandle passed to tfOpenInterface,
and with an error code value (which is zero on success).

Example of a call with a non-null second parameter:

Given interfaceHandle (as returned by tfAddInterface), and the user defined
interface notify function devNotifyFunc:

void devNotifyFunc(ttUserInterface interfaceHandle,
int errorCode);

tfUseDhcp (interfaceHandle, devNotifyFunc);

Example of a call with a null second parameter:

If the user does not wish to be notified of tfOpenInterface completion, then he
can use the predefined NULL function pointer:

tfUseDhcp (interfaceHandle,
TM_DEV_NOTIFY_FUNC_NULL_PTR);

Turbo Treck Real-Time TCP/IP User’s Manual

7.28

Parameters
Parameter Description
interfaceHandle The interface handle as returned by

tfAddInterface
devNotifyFuncPtr A pointer to a function that will be

called upon completion of
tfOpenInterface for a DHCP
configuration.

Returns
Value Meaning
0 Success
TM_EINVAL The interface handle parameter is

invalid.
TM_EMFILE Not enough sockets to open the

BOOTP client UDP socket
TM_ADDRINUSE Another socket is already bound to

the BOOTP client UDP port.

Optional Protocols

7.29

DHCP User Controlled Configuration API
Description
With the user-controlled configuration, the user can query a DHCP server directly
without automatically configuring an interface. This is useful for example on a box
that has an Ethernet interface, serial lines, and acts as a PPP server for the serial
lines. The user could get IP addresses from a DHCP server via the Ethernet interface
and then assign those IP addresses to PPP clients on its serial lines.

Those IP addresses should also be added to the box proxy ARP table, so that the
box can respond to ARP requests on behalf of its PPP clients.

The following steps are needed:

tfInitTreckOptions must be called before tfStartTreck is called in order to reserve
numberSerialLines DHCP user entries.

errorCode = tfInitTreckOptions (
 TM_OPTION_DHCP_MAX_ENTRIES,
 (unsigned long)numberSerialLines
);

If no error:

errorCode = tfStartTreck();

Add all your link layers, and interfaces. For Ethernet, call:

ethernetLinkLayerHandle = tfUseEthernet ();

ethernetInterfaceHandle = tfAddInterface(
 namePtr,
 ethernetLinkLayerhandle,
 ...);

For PPP, call tfUseAsyncServerPpp once, and tfAddInterface for each serial line.
Save each PPP serial lines interface handle returned by each tfAddInterface in a
table.

Configure the Ethernet interface with either a static IP address and IP netmask, or
using DHCP as shown in the Automatic Configuration paragraph above. If using
DHCP, wait for the tfOpenInterface to complete.

Turbo Treck Real-Time TCP/IP User’s Manual

7.30

Ask for a DHCP address on the Ethernet interface for one PPP interface client.

errorCode = tfDhcpUserStart(
 ethernetInterfaceHandle,
 userIndex,
 dhcpNotifyFunc);

userIndex must be initialized to zero for the first query (first PPP interface), 1 for a
second query, etc..

A zero return value indicates that the DHCP request has completed successfully. A
TM_EINPROGRESS return value indicates that a DHCP configure or request has
been sent, and this is OK.

A TM_EALREADY return value indicates that a DHCP discover/request has al-
ready been sent because of a previous call to tfDhcpUserStart.

If errorCode is TM_EINPROGRESS, or TM_EALREADY, wait for the DHCP con-
figuration to complete (i.e. for dhcpNotifyFunc to be called). During the wait, ensure
tfTimerUpdate (or tfTimerUpdateIsr), and tfTimerExecute are called. When the
DHCP request has completed or timed out, the dhcpNotifyFunc will be called as
follows:

dhcpNotifyFunc(ethernetInterfaceHandle, userIndex, errorCode);

The userIndex corresponds to the second parameter of tfDhcpUserStart, and
errorCode indicates whether the DHCP request has been successful (i.e errorCode
== 0), or timed out (errorCode == TM_ETIMEDOUT).

When the DHCP request is successful, the user can retrieve the IP address and
parameters given by the DHCP server:

userBtEntryPtr = tfDhcpUserGetBootEntry(ethernetInterfaceHandle,
 userIndex);

If the DHCP request has been successful, this function will return a pointer to a
boot structure (null otherwise). The userBtEntryPtr is a pointer to a structure
defined in trsocket.h.

Optional Protocols

7.31

In particular, the userBtEntryPtr will contain:

The allocated IP address in the field userBtEntryPtr->btuYiaddr.
Network subnet mask in the field userBtEntryPtr->btuNetMask.
Default router entry in the field userBtEntryPtr->btuDefRouter.
Primary Domain name server userBtEntryPtr->btuDns1ServerIpAddress
Secondary Domain name server userBtEntryPtr->btuDns2ServerIpAddress

The user should save the userBtEntryPtr in its PPP table (where it
previously stored the corresponding PPP interface handle, pppInterfaceId).

The user can now assign that IP address to its future serial line
PPP client, by calling:

errorCode = tfPppSetOption (
 pppInterfaceId, TM_PPP_IPCP_PROTOCOL,
 TM_PPP_OPT_ALLOW, TM_IPCP_IP_ADDRESS,
 (const char TM_FAR *)&userBtEntryPtr
->btuYiaddr,4);

The user can then configure that PPP interface calling tfOpenInterface with this
pppInterfaceId parameter, using a static IP address for its interface. In the link layer
call back function (set in tfUseAsyncServerPpp), if the flag is
TM_LL_OPEN_COMPLETE, then the user can add the PROXY ARP entry:
tfAddProxyArpEntry(userBtEntryPtr->btuYiaddr); In the link layer call back func-
tion, if the flag is TM_LL_CLOSE_STARTED then the user can delete the PROXY
ARP entry: tfDelProxyArpEntry(userBtEntryPtr->btuYiaddr);

The user can request for additional DHCP IP addresses for additional PPP serial
lines, repeating this process starting at tfDhcpUserStart above with different
userIndex, and pppInterfaceId values.

If the user were to close the Ethernet interface, then all the DHCP addresses that
were allocated with the tfDhcpUserStart calls should be released prior to closing
the Ethernet interface, by calling:

tfDhcpUserRelease
(
ethernetInterfaceHandle,
userIndex
);

This must be done for each userIndex that was used in a successful
tfDhcpUserStart.

Turbo Treck Real-Time TCP/IP User’s Manual

7.32

tfDhcpUserGetBootEntry

#include <trsocket.h>

ttUserBtEntryPtr tfDhcpUserGetBootEntry
(
ttUserInterface interfaceHandle,
int index
);

Function Description:
Get a pointer to a DHCP user BOOT entry. This function can only be used after
a successful call to tfDhcpUserStart. If successful, the function will return a pointer
to a ttUserBtEntry structure as defined in trsocket.h. In particular this structure
will contain:

The allocated IP address in the field btuYiaddr.
Default router entry in the field btuDefRouter.
Primary Domain name server btuDns1ServerIpAddress
Secondary Domain name server btuDns2ServerIpAddress

Parameters
Parameter Description
interfaceHandle Ethernet interface handle
userIndex User Index (between 0, and

tvMaxUserDhcpEntries - 1)
Returns

Value Meaning
userBtEntryPtr Pointer to a user boot entry as de-

fined in trsocket.h
(ttUserBtEntryPtr) 0 Failure. No DHCP address bound.

Optional Protocols

7.33

tfDhcpUserRelease

#include <trsocket.h>

int tfDhcpUserRelease
(
ttUserInterface interfaceHandle,
int userIndex
);

Function Description
Cancel a DHCP request and/or a DHCP lease that had been previously
obtained using tfDhcpUserStart().

Parameters
Parameter Description
interfaceHandle Ethernet interface handle
userIndex User Index (between 0, and

tvMaxUserDhcpEntries - 1)

Returns
Value Meaning
TM_ENOERROR Success
TM_EINVAL Bad parameter

Turbo Treck Real-Time TCP/IP User’s Manual

7.34

tfDhcpUserStart

#include <trsocket.h>

int tfDhcpUserStart
(
ttUserInterface interfaceHandle,
int userIndex,
ttUserDhcpNotifyFuncPtr dhcpNotifyFuncPtr
);

Function Description
This function allows the user to reserve a DHCP address on the Ethernet
interface for another interface (i.e PPP for example). Prior to this call, the ethernet
interface has to have been configured (possibly using DHCP as well). See
tfOpenInterface for details. This function starts sending a DHCP request on the
Ethernet interface handle parameter. The index corresponds to a unique user DHCP
request. It has to be between 0 and tvMaxUserDhcpEntries - 1. (Note that
tvMaxUserDhcpEntries default value is 0, and has to be changed with a
tfInitSetTreckOptions, with option name TM_OPTION_DHCP_MAX_ENTRIES
to a value equal to the number of DHCP IP addresses that we want to reserve for our
other interface(s), prior to this call.). dhcpNotifyFunc is a user supplied call back
function which will be called when either the DHCP request has been successful, or
has timed out, or when a previously leased DHCP address has been cancelled by
the server.

If tfDhcpUserStart returns TM_ENOERROR, the DHCP request has completed
successfully. A TM_EINPROGRESS error return indicates that a DHCP configure
or request has been sent (this is alright).

A TM_EALREADY error return indicates that a DHCP discover/request
has been previously sent as a result of a previous call to tfDhcpUserStart(). If the
function returns TM_EINPROGRESS, or TM_EALREADY, wait for the DHCP
configuration to complete (i.e for dhcpNotifyFunc to be called). During the wait,
make sure tfTimerUpdate () (or tfTimerUpdateIsr ()), and tfTimerExecute () get
called.

If the function returns TM_EINPROGRESS, or TM_EALREADY, then, when the
DHCP request has completed, or timed out the dhcpNotifyFunc will be called as
follows:

Optional Protocols

7.35

(*dhcpNotifyFunc)(ethernetInterfaceHandle, userIndex, errorCode);
where the userIndex corresponds to the second parameter of tfDhcpUserStart(),
and errorCode indicates whether the DHCP request has been successful (errorCode
== 0), or timed out (errorCode ==TM_ETIMEDOUT).

Parameters
Parameter Description
InterfaceHandle Ethernet interface handle
UserIndex User Index (between 0, and

tvMaxUserDhcpEntries - 1)

dhcpNotifyFuncPtr Pointer To a function that will be called
when the DHCP request
has completed, or timed out.

Returns
Value Meaning
TM_ENOERROR Success. The DHCP notify

function will not be called.
TM_EINPROGRESS DHCP request/discover sent with

no error.
TM_EALREADY DHCP request/discover previously

sent.
TM_EINVAL Bad parameter
TM_ENOBUFS Not enough memory
Other As returned by device driver send

function.

Turbo Treck Real-Time TCP/IP User’s Manual

7.36

Dialer
Description
Turbo Treck PPP, or SLIP includes a module to facilitate dialing a remote host (most
likely, an ISP). Dialing occurs prior to the establishment of a PPP connection and is
triggered by calling tfOpenInterface. Prior to this call, the user would first enable
the dialer, and then set up how the dialer will behave. This is done with a series of
‘send-expect’ pairs, where the local client sends a string to the remote host and
waits for its response. ‘Expect-send’ pairs behave in the opposite manner. This is
similar to the method used in many UNIX scripted dialers.

Each ‘send-expect’ or ‘expect-send’ pairs have an error string associated with
them. When this string is received, it triggers an error inside the dialer. The default
behavior is simply to move to the next state (i.e., the next ‘send-expect’ pair). If
TM_DIALER_FAIL_ON_ERROR is set and this error string is received, the entire
dialing session will be aborted with an error.

Every ‘send-expect’ pair has a time-out value and a retry value associated with it.
This allows, for instance, a dialer to attempt to dial a phone number a finite number
of times, and if it still fails, to abort the session.

When the dialer has finished, either through completion or error, the user is notified
through a notification function which is passed in when the dialer is enabled.

Example
Here is an example of a device dialing and logging in to and ISP:

Local: Remote:

ATDT5551212

CONNECT14400

Login:

username

Password:

password

Welcome!

Optional Protocols

7.37

This session could be accomplished with the following code:

/* Initialize the dialer */
tfUseDialer(interfaceHandle, dialerNotify);

/*
 * client: send ‘ATDT5551212’ -> server: send ‘CONNECT14400’
 * 30 second time-out, 5 retries, fail if ‘ERROR’ returned.
 */
tfDialerAddSendExpect(interfaceHandle,

 “ATDT5551212”,
 “CONNECT14400”,
 “ERROR”,
 5,
 30,
 TM_DIALER_FAIL_ON_ERROR);

/* server: send ‘Login:’ -> client: send ‘username’ */

 (interfaceHandle,
 “username”,
 “Login:”,
 (char *) 0,
 0,
 60,
 0);

/* server: send ‘Password:’ -> client: send ‘password’ */
tfDialerAddExpectSend (interfaceHandle,

 “password”,
 “Password:”,

 (char *) 0,
 0,
 60,
 0);

/*
 * server: send ‘Welcome’ -> client: send nothing (success-
ful)
 * server: send ‘Invalid Login’ -> client: send nothing
(failure)
 */
tfDialerAddExpectSend (interfaceHandle,

 “”,
 “Welcome”,

 “Invalid Login”,
 0,
 60,
 TM_DIALER_FAIL_ON_ERROR);

/* Dialing starts now*/

tfOpenInterface (interface handle,...);

Turbo Treck Real-Time TCP/IP User’s Manual

7.38

tfDialerAddExpectSend

#include <trsocket.h>

int tfDialerAddExpectSend
(
ttUserInterface interfaceHandle,
char
sendString,
char
expectString,
char
errorString,
int numRetries,
int timeout,
unsigned char flags
);

Function description
This function adds an expect-send pair to the dialer (client waits for the server to
send a string, and then sends a string in response). When the dialer reaches this
phase, it waits for the remote host to send a string. If this string matches
expectString, sendString is sent back in response and the dialer moves to the next
state. If the received string matches errorString, this phase is aborted, and if
TM_DIALER_FAIL_ON_ERROR is set in flags, the entire dialing session is termi-
nated with an error.

The dialer will wait for expectString or errorString for a time equal to timeout in
seconds. If the number of retries specified by numRetries has not been exhausted
when this time elapses, the dialer will begin waiting again. When the retry limit has
been reached, the dialer will abort the session and return with an error.

Optional Protocols

7.39

tfDialerAddSendExpect

#include <trsocket.h>

int tfDialerSendExpect
(
ttUserInterface interfaceHandle,
char
sendString,
char
expectString,
char
errorString,
int numRetries,
int timeout,
unsigned char flags
);

Function description
This function adds a send-expect pair to the dialer (local peer sends a string and
waits for the remote peer to respond). When the dialer reaches this phase, it will
send sendString to the remote peer and waits for its response. If this response
matches expectString, the dialer successfully moves to the next state. However,
if the received string matches errorString the dialer will abort this phase, and if
TM_DIALER_FAIL_ON_ERROR is set in flags the entire dialing session will be
aborted with an error.

After sending sendString, the dialer will wait for a time equal to timeout in
seconds. If the number of retries specified by numRetries has not been ex-
hausted when this time elapses, the dialer will resend sendString and repeat this
process. When the retry limit has been reached, the dialer will abort the session
and return with an error.

Turbo Treck Real-Time TCP/IP User’s Manual

7.40

Parameters

Parameter Description
interfaceHandle Interface handle used in previous

call to tfUseDialer; this specifies
the device to dial upon

sendString String to send when the
‘expectString’ is received from the
peer

expectString String to send to peer immediately
errorString String that, if received from the peer,

indicates an error
numRetries Number of times to retry sending

‘sendString’ before failing
timeout Amount of times (in seconds)

between time-outs
flags Only one flag is currently defined:

TM_DIALER_FAIL_ON_ERROR.
This flag causes the dialer to
immediately return if the error string
is received. Normally, the dialer
would simply attempt to resend the
previous string

Returns
Value Meaning
TM_ENOERROR Expect/send string added success-

fully
TM_EINVAL Bad interface handle
TM_EINVAL Timeout value is zero
TM_EINVAL Bad send/expect strings
TM_ENOMEM Insufficient memory to add expect/

send strings

Optional Protocols

7.41

tfUseDialer

#include <trsocket.h>

int tfUseDialer

(

ttUserInterface interfaceHandle,

ttUserLnkNotifyFuncPtr notifyFuncPtr

);

Function description
Enables and initializes the dialer. This does not start the dialer, but simply
initializes it – the dialing will occur when tfOpenInterface is called. This should
only be enabled on a serial interface running PPP/SLIP, and should be called
before any calls to tfDialerAddSendExpect or tfDialerAddExpectSend are made.

The notification function is used to monitor the status of the dialer. The proto-
type of the notification function is

myDialerNotify(ttUserInterface interfaceHandle, int flags);

The notification function will only be called when the dialer has finished (either
successfully or unsuccessfully). There are two possible values for the flags
parameter:

TM_DIALER_OPEN_COMPLETE The dialer has completed the dialing
session successfully.

TM_DIALER_OPEN_FAILED The dialer encountered an error and
aborted the session.

Turbo Treck Real-Time TCP/IP User’s Manual

7.42

Parameters

Parameter Description
interfaceHandle Interface to enable the dialer on
notifyFuncPtr User’s function to be called to

notify of status of dialer

Returns

Value Meaning
TM_ENOERROR Dialer successfully initialized
TM_EINVAL Bad interface handle
TM_EALREADY Dialer already initialized
TM_ENOMEM Insufficient memory to initialize

dialer

Optional Protocols

7.43

IGMP API
Introduction
IP multicasting is the transmission of an IP datagram to a “host group”, a set of zero
or more hosts identified by a single IP destination address. A host group IP address
is a multicast IP address, or class D IP address, where the first 4 bits of the address
are 1110. The range of host group IP addresses (class D) are from 224.0.0.1 to
239.255.255.255. Class D addresses starting with 224.0.0.x and 224.0.1.x have been
reserved for various permanent assignments (see RFC 1700). The range of addresses
between 224.0.0.1 and 224.0.0.255 are local multicast addresses (i.e. they cannot be
forwarded beyond the local subnet), and have been reserved for the use of routing
protocols and other low-level topology discovery or maintenance protocols, such
as gateway discovery and group membership recording. The membership of a host
group is dynamic: hosts may join and leave groups at any time. IGMP (Internet
Group Management Protocol) is the protocol used by IP hosts to report their
multicast group memberships to multicast routers. Local host groups (224.0.0.0
through 224.0.0.255) memberships do not need to be reported, since as indicated
above they cannot be forwarded beyond the local subnet. Without the IGMP
protocol, a host can send multicast IP datagrams, but cannot receive any.

Description
The following RFC’s are implemented in the Turbo Treck IGMP implementation.

RFC 1112

RFC 2236

RFC 2113

Host Extensions for IP Multicasting

Internet Group Management Protocol

IP router alert option

We will describe the design of the IP multicasting, and the host IP IGMP protocol
implementation in the Turbo Treck stack in detail.

Enabling the IGMP Code
To compile in the IGMP code, then the following macro should be added to
trsystem.h:

#define TM_IGMP

Sending Multicast Packets
Send API
Sending multicast packets does not require new API functions. The user
uses the send and sendto functions on a UDP socket with a multicast IP address
destination.

Turbo Treck Real-Time TCP/IP User’s Manual

7.44

IP Outgoing Interface for Multicast Packets
The user can choose a per socket default interface to send multicast packets by
using a new setsockopt option (IPO_MULTICAST_IF) at the IPPROTO_IP level with
the IP address of the outgoing interface as the option value. If the user does not
specify a destination interface that way, then a default outgoing interface will be
used, if, after having configured the interface, the user specified a system wide one,
using the new tfSetMulticastInterface API. Otherwise, the multicast sendto will
fail.

IP TTL for Multicast Packets
By default, the IP layer will send a multicast packet with a TTL value
of 1, unless the user changes the default multicast IP ttl value for the socket with
setsockopt. A TTL value of 1, will not allow the multicast IP datagram to be forwarded
beyond the local subnet. The option IPO_MULTICAST_TTL at the IPPROTO_IP
level has been added to setsockopt, and getsockopt.

Mapping Multicast Addresses to Layer 2 Hardware Addresses
To enable multicast mapping from the IP multicast address to an Ethernet multicast
address, the TM_DEV_MCAST_ENB flag must be set in the tfOpenInterface flags
parameter.

IGMP Protocol
Receiving UDP Multicast Packets
When a UDP datagram whose destination IP address is a multicast address, arrives
on an interface from the network, we check that the host is a member of the multicast
group on the interface it came in. A host is a member of a group address for a given
interface, if it joined that multicast group.

Note: In order to receive multicast packets, the user must join a host group.

Joining a Host Group
To join a host group, a user socket application calls setsockopt with the
IPO_ADD_MEMBERSHIP option at the IPPROTO_IP level. The option pointer
points to a structure containing the IP host group address and the interface (defined
by its IP address). It will return TM_EINVAL if the IP host group address is not a
class D address or if there is no interface configured with the IP address stored in
the structure. It will return TM_EADDRINUSE if there was a previous successful
IPO_ADD_MEMBERSHIP call for that host group on the same interface. Otherwise,
this is the first call to IPO_ADD_MEMBERSHIP for the pair. The IP host group
address will be added to the interface. In order to enable reception of that multicast
address, the Turbo Treck stack will call the interface driver specific ioctl function. The
driver specific ioctl function is called with the TM_DEV_SET_MCAST_LIST flag
value, optionPtr pointing to the list of Ethernet multicast addresses corresponding
to all the IP host group addresses added so far, and optionLen indicating the

Optional Protocols

7.45

number of those Ethernet multicast addresses. We keep track of the list of Ethernet
multicast addresses, so that the driver does not have to.

Note: In order to receive multicast packets, the user must implement a section
in drvIoctl to create a multicast address from a list of Ethernet addresses, and
store that multicast address in the Ethernet chip. (See drvIoctl for details.)

Leaving a Host Group
To stop receiving multicast packets for a given host group destination on an interface,
the user need to leave that host group on that interface by calling setsockopt with
the IPO_DROP_MEMBERSHIP option at the IPPROTO_IP level. The option pointer
points to a structure containing the IP host group address, and the interface (defined
by its IP address). It will return TM_EINVAL if the IP host group address is not a
class D address or if there is no interface configured with the IP address stored in
the structure. It will return TM_ENOENT if there is no such host group on the
interface. Otherwise, the IP Host group address will be deleted from the interface,
and the Turbo Treck stack will call the interface driver specific ioctl to update the
list of Ethernet multicast addresses corresponding to the IP host group addresses
that have been added and not dropped. The driver specific ioctl function is called
with the TM_DEV_SET_MCAST_LIST flag value, and with optionPtr pointing to
the list of Ethernet multicast addresses corresponding to all the IP host group
addresses added (and not dropped), and with optionLen indicating the number of
those Ethernet multicast addresses. We keep track of the list of Ethernet multicast
addresses so that the driver does not have to.

Turbo Treck Stack Initialization of the IGMP Protocol
When a new interface is configured, the Turbo Treck stack will automatically join
the 224.0.0.1 host group on that interface. If RIP is enabled, the Turbo Treck stack
will also automatically join the 224.0.0.2 host group on that interface.

Limitations
This implementation is for IP hosts only. It does not include multicast routing. A
host group can only be joined once on a given interface. This will prevent multiple
sockets on the IP host from sharing the same multicast address, i.e. only one
process on the IP host could receive multicast packets for a given multicast
destination IP address. No loop back of multicast packet is allowed.

Turbo Treck Real-Time TCP/IP User’s Manual

7.46

drvIoctlFunc

#include <trsocket.h>

void drvIoctlFunc
(
ttUserInterface interfaceHandle,
int flag,
void * optionPtr,
int optionLen
);

Function Description
drvIoctlFunc is a pointer to a function provided by the user and given to the Turbo
Treck stack as the 8th parameter of the tfAddInterface() function. The Turbo Treck
TCP/IP stack will call the driver ioctl function with either
TM_DEVICE_SET_MCAST_LIST, or TM_DEVICE_SET_ALL_MCAST as de-
scribed below. The driver does not have to maintain a list of currently enabled
multicast addresses (since the stack will do that) and passes the complete list every
time a new multicast address needs to be added or deleted.

Parameters
Parameter Description
interfaceHandle The interface handle of the driver’s

ioctl routine to call
flag See below
optionPtr Pointer to a flag specific parameter.

(See below.) optionLen Length of
the option

Optional Protocols

7.47

Flag Parameter
TM_DEV _SET_MCAST_LIST Enable the reception of the Ethernet

multicast addresses pointed to by
optionPtr. optionPtr points to a list of
48-bit multicast Ethernet addresses, and
optionLen contains the number of
multicast Ethernet addresses optionPtr
points to. If optionLen is non-zero, The
driver will enable reception of the
optionLen multicast addresses in the list
pointed to by optionPtr. If optionLen is
zero, the driver will disable all multicast
reception.

TM_DEV_SET_ALL _MCAST The driver will enable reception of all
multicast addresses and should ignore
the optionPtr and optionLen arguments.

Returns
Value Meaning
0 Success
NONZERO Driver specific error code

Turbo Treck Real-Time TCP/IP User’s Manual

7.48

tfSetMcastInterface

#include <trsocket.h>

int tfSetMcastInterface
(
ttUserInterface interfaceHandle,
unsigned char mhomeIndex
);

Function Description
This function allows can specify a default interface to be used to send multicast
destination IP packets. This default interface will be used to send outgoing
multicast packets, when the user program does not specify an interface (i.e. the
user did not use the IPO_MULTICAST_IF option on the socket).

Parameters
Parameter Description
interfaceHandle The interface handle of the default

interface to be used as output
interface for outgoing multicast
packets

Returns
Value Meaning
0 Success
TM_ENETDOWN Interface not configured yet
TM_EADDRNOTAVAIL Interface does not have the

multicast enabled flag set
TM_EALREADY Default multicast interface already

set
TM_EINVAL Invalid interface handle

Optional Protocols

7.49

NAT
The point of NAT is to free a network from certain limitations of IP such as the
requirement for each machine to have a fixed unique address. It is primarily used
when there is only one IP address to be shared by several machines, or there are
multiple IP addresses that need to be flexibly assigned to multiple machines
(either the machines change often or the set of IP addresses may change).

This module enables the Turbo Treck TCP/IP stack to become a NAT Router,
which acts as a link between public and private networks. Resources inside the
private network (clients and servers) are identified differently on the two
networks. A common example is a home or office LAN with a private addressing
scheme, and the public Internet with publicly assigned IP addresses.

Note: NAT is not a security feature and is not a substiture for a firewall. A NAT
router should only be used between networks of equal trust levels.

All initialization of a NAT router implementation of the Turbo Treck stack is first
done just as if the there were no NAT feature and the stack were acting as a
transparent router. This includes functions like tfUseEthernet(), tfAddInterface()
and tfOpenInterface(). Then the NAT configuration functions are called. First,
tfNatConfig() is called on each public interface. Then, different functions are
called depending on the type of NAT implementation.

One IP address
The two types of resources when there is only one public IP address to work
with are NAPT and Inner Servers.

Several machines can access a public network through a NAT router using a
single public IP address. This is technically NAPT, the "P" refers to the tricks of
port number translation that are used to distinguish several processes on several
machines inside the private network.

Normally, TCP and UDP port numbers distingish several processes but only on
one machine. tfNatConfigNapt() assigns a range of synthetic port numbers to a
public address on a public NAT interface. NAT draws from those ports to
support every TCP and UDP connection that crosses the stack between private
and public networks (actually between a public network and any other).

Turbo Treck Real-Time TCP/IP User’s Manual

7.50

NAT connections are timed out based on traffic.
(See NAT_NTRTTL_...constants in trmacro.h.)

Default timeouts are:
 Incomplete TCP connections 1 minute
 Completed TCP connections 24 hours
 Terminated TCP connections 1 minute
 unmade FTP PORT connections 5 minutes
 UDP DNS queries 1 minute
 non-DNS UDP queries 5 minutes
 ICMP packets with identifier 5 minutes

NAPT only supports connections initiated outbound (private client, public
server). In order for a server on the private network to be accessible to
a client on the public network in a NAPT environment, an Inner Server must
be configured. There are three types of Inner Servers, TCP, FTP and UDP.
In each case, an inner private IP address and port number are associated
with an outer public IP and port. Clients on the public network call the
public values. NAT translates this traffic to the private server's values.

NAPT and Inner Server support only TCP and UDP traffic.

Multiple IP addresses
The two types of resources in this environment are Static and Dynamic
public IP address assignments. A Static assignment associates one public
IP address at a time with one private address, permanently.

A Dynamic assignment does so automatically, as needed. New dynamic address
associations are initiated only by outbound TCP SYN packets or by any
outbound packets of another protocol (for example UDP DNS or ICMP Ping).

A Dynamic assignment expires when no packets have crossed for a certain
amount of time (default 15 minutes, TM_NTRTTL_DYNAMIC in trmacro.h).
Expired Dynamic associations become available for use by other private
parties. As individual TCP and UDP sessions are not tracked on a Dynamic
assignment, the timeout does not discriminate connection status or traffic
type.

Static assignments would be useful for servers on the inside network or for
users who require consistent full-featured access to the public network.

Dynamic and Static assignments support almost all IP traffic including TCP,
UDP, and ICMP.

Optional Protocols

7.51

Mixing
Some mixing of the two schemes is possible. For example, you can configure
static associations after a NAPT interface is configured if you have multiple
IP's (though of course you are using only one for NAPT). Be sure to
call tfNatConfigStatic() only after tfNatConfigNapt().

Ping
Ping, using ICMP echo, is supported via Static and Dynamic IP address
associations. Outbound Ping will also work on NAPT configurations, that is
a private client pinging a public server. Inner servers cannot be pinged
however. If one were to try one would only ping the NAT router via its
public interface. So this would not detect whether the inner server was
up or not, just that the NAT router were up.

TraceRoute
Unix traceroute (or Windows tracert) uses unsolicited UDP datagrams
and ICMP error messages to detect routing pathways. It will work over
static and dynamic connections in either direction and NAPT in the
outbound direction. One cannot thoroughly TraceRoute to an inner server
however, just to the NAT router, as with Ping.

FTP Servers
This NAPT implementation goes to athletic lengths to accommodate FTP
servers either outside or inside (as much as any other server is supported
inside). Special handling is made of every outbound FTP PORT command and
PASV reply 227. NAT translates the private IP addresses and port numbers
in those messages into public values.

Proxy or 3rd party FTP transfers are not supported. Non-PORT, non-PASV
transfers are not supported. (Unix "sendport" turned off.)

FTP transfers involving server port numbers other than the standard ports
21 and 20 are not supported (e.g. by entering the client command
"open <host> <port>").

Private IP Addressing
The following IP addresses should be used for private networks when
connected by a NAT router to the public Internet. They have been reserved
specifically for this purpose by RFC 1918 "Address Allocation for Private
Internets".

10.0.0.0 - 10.255.255.255 16 million class A addresses
172.16.0.0 - 172.31.255.255 1 million class B addresses
192.168.0.0 - 192.168.255.255 64 thousand class C addresses

Using other addresses may result in conflicts the NAT router can't resolve.

Turbo Treck Real-Time TCP/IP User’s Manual

7.52

Triggers
The basis of this implementation of NAT is the "trigger" object. Each
ttNatTrigger instance represents some possibility of interception of an
incoming or outgoing packet. Every packet that comes in or out of a public
NAT interface is scrutinized by all current triggers. There are several
types of triggers (see TM_NTRTYPE_... in trmacro.h), each looking at different
aspects of packets. Also, triggers are either permanent or temporary, the
duration depending on type, traffic, and timing.

Some triggers recognize new TCP connections and "spawn" other triggers that
live for the duration of those connections. Those session triggers look at
addresses and ports. Some translate packets based on IP address alone. All
permanent triggers are configured by API calls.

As the trigger list is a LIFO linked list, triggers configured or spawned *later*
detect packets *earlier*, and so take precedence.

Public vs Private
Each "public" NAT interface maintains a linked list of triggers
(ttDevice.devNatTriggerHead). A "private" interface is simply one that is not
public. No transformations are needed on private interfaces. The task of the
NAT software is to make a public NAT interface appear private to the rest of the
TCP/IP stack. Internally, NAT is associated only with the interface to the public
network.

The business of each public NAT interface involves public and private ad-
dresses and ports. The system on which the stack is running is known by the
public information on that exernal public network, and by the private information
by the TCP/IP stack and other internal private networks.

Reference Implementation
TSTNAT.C implements a NAT Router with a private Ethernet and a public dialup
PPP connection to the public Internet

NAT API (Application Programming Interface) Functions

Optional Protocols

7.53

tfNatConfig

#include <trsocket.h>

int tfNatConfig
(
ttUserInterface interfaceHandle
);

Function Description
Identify a stack device as a public NAT interface. Call exactly once per public
NAT interface. Call before any other NAT functions on this interface. If the stack
ever shuts down orderly, call tfNatUnConfig for each interface where
tfNatConfig() returned TM_ENOERROR

Parameters
Parameter Description
interfaceHandle interface handle of the public NAT

device.
Return

Value Meaning
TM_ENOERROR success
TM_EINVAL not a valid interface handle

Turbo Treck Real-Time TCP/IP User’s Manual

7.54

tfNatUnConfig

#include <trsocket.h>

int tfNatUnConfig
(
ttUserInterface interfaceHandle
);

Function Description
Dismantle a stack device's functioning as a public NAT interface. Call exactly
once per public NAT interface, that is, for each interface for which tfNatConfig()
returned TM_ENOERROR Call after all other NAT functions on this interface.

Parameters
Parameter Description
 interfaceHandle interface handle of the NAT device

to tfNatUnConfig.

Return
Value Meaning
TM_ENOERROR success
TM_EINVAL not a valid interface handle or not

an interface that was fNatConfig()'d

Optional Protocols

7.55

tfNatConfigNapt

#include <trsocket.h>

int tfNatConfigNapt
(
ttUserInterface interfaceHandle,
ttUserIpAddress ipPublic,
ttUserIpPort portPublicMin,
ttUserIpPort portPublicMax
);

Function Description
This function defines a range of port numbers that are used to route traffic from
multiple private machines through the NAT router to the public network.

Call tfConfigNatp only once on a public NAT interface. Do not use the ipPublic
value in any other NAT configuration function but the one call to
tfNatConfigNapt() except the tfNatConfigInner...Server() functions.

tfNatConfigNapt should be called before any tfNatConfigStatic() or
tfNatConfigDynamic() calls on the same interface. In that case, NAPT would
only be used for non-statically assigned machines after all dynamic associations
were already in use.

Though UDP ports never conflict with TCP ports, there is only one "next port"
maintained, so ports are allocated as if they did conflict.

 Parameters
Parameter Description
 interfaceHandle Interface handle of the public NAT

device on which to configure routing.
 ipPublic Public IP address, network byte order
 portPublicMin Inclusive range of port numbers, host

byte order.
 portPublicMax Inclusive range of port numbers, host

byte order.
 Return

 Value Meaning
 TM_ENOMEM Insufficient memory or too many

triggers already
 TM_ENOERROR Newly allocated trigger, ip's and ports

initialized

Turbo Treck Real-Time TCP/IP User’s Manual

7.56

tfNatConfigInnerTcpServer

#include <trsocket.h>

int tfNatConfigInnerTcpServer
(
ttUserInterface interfaceHandle,
ttUserIpAddress ipPublic,
ttUserIpAddress ipPrivate,
ttUserIpPort portPublic,
ttUserIpPort portPrivate
);

Function Description
Configure a server on the private network for access via a specific TCP port on
the public network. The public world will know the server as ipPublic:portPublic.
On the private network, the server will be implemented at ipPrivate:portPrivate.

Call this function as many times as you like, being sure not to assign conflicting
public or private ip/port/protocol triads.

Parameters
Parameter Description
interfaceHandle Interface handle of the public NAT

device to configure public a TCP
port on.

ipPublic The server's public identity,
network byte order

ipPrivate The server’s private identity,
network byte order.

portPublic The server’s pubic implementation,
host byte order.

portprivate The server's private implementation,
host byte order

Returns
Value Meaning
TM_ENOMEM Insufficient memory or too many

triggers already
TM_ENOERROR Newly allocated trigger, ip's and

ports initialized
 TM_EINVAL Erroneous use, for details enable

TM_NAT_TRACE

Optional Protocols

7.57

tfNatConfigInnerUdpServer

#include <trsocket.h>

int tfNatConfigInnerUdpServer
(
ttUserInterface interfaceHandle,
ttUserIpAddress ipPublic,
ttUserIpAddress ipPrivate,
ttUserIpPort portPublic,
ttUserIpPort portPrivate
);

Function Description
Configure a server on the private network for access via a specific UDP port on
the public network. The public world will know the server as ipPublic:portPublic.
On the private network, the server will be implemented at ipPrivate:portPrivate.

Call this function as many times as you like, being sure not to assign conflicting
public or private ip/port/protocol triads.

Parameters
Parameter Description
interfaceHandle Interface handle of the public NAT

device to cofigure public UDP port
on

ipPublic The server's public identity, host
byte order

ipPrivate The server’s private identity, host
byte order

portPublic The server’s public implementation,
host byte order

portprivate The server's private implementation,
host byte order

Returns
Value Meaning
TM_ENOMEM Insufficient memory or too many

triggers already
TM_ENOERROR Newly allocated trigger, ip's and

ports initialized
 TM_EINVAL Erroneous use, for details enable

TM_NAT_TRACE

Turbo Treck Real-Time TCP/IP User’s Manual

7.58

tfNatConfigInnerFtpServer

#include <trsocket.h>

int tfNatConfigInnerFtpServer
(
ttUserInterface interfaceHandle,
ttUserIpAddress ipPublic,
ttUserIpAddress ipPrivate,
ttUserIpPort portPublicMin,
ttUserIpPort portPublicMax
);

Function Description
This function configures an FTP server on the private network for access as an
FTP server via the public IP address.
The public world will know the FTP server as ipPublic:21.
On the private network, the server will be implemented at ipPrivate:21.
Only one FTP server can be configured for a public NAT interface.

In case the FTP server ever gets a PASV command from the public client, the
inbound connection must be accommodated on a unique public port. Those
ports are taken from the inclusive range For PORT-mode transfers to work, you
should have NAPT configured for the same public IP address. The data connec-
tion initiated by the private server will have a private port of 20 and a synthetic
public port. Though unconventional, this does not appear to thwart the FTP
client on SunOS (at least). Non-PORT, non-PASV transfers are not supported
(i.e. with the sendport option in some Unix FTP clients turned off)

Parameters
Parameter Description
interfaceHandle Interface handle of the public NAT

device on which to configure an FTP
server

ipPublic The FTP server's public IP address -
network byte order

ipPrivate The FTP server's private IP address -
network byte order

portPublicMin Inclusive range of synthetic ports
TM_SINGLE_INTERFACE_HOME to
be used for PASV

portPublicMax Connections to the inner FTP server,
similar to NAPT synthetic ports (ports
are in host byte order)

Optional Protocols

7.59

Returns
Value Meaning
TM_ENOMEM Insufficient memory or too many

triggers already
TM_ENOERROR Newly allocated trigger, ip's and

ports initialized
TM_EINVAL Erroneous use, for details enable

TM_NAT_TRACE

Turbo Treck Real-Time TCP/IP User’s Manual

7.60

tfNatConfigStatic

#include <trsocket.h>

int tfNatConfigStatic
(
ttUserInterface interfaceHandle,
ttUserIpAddress ipPublic,
ttUserIpAddress ipPrivate
);

Function Description
Permanently associate a public IP with a private IP. Useful to support the
maximum Configure as many static associations as you like on a public NAT
interface, being sure to avoid conflicts of course (different public IP's) with other
static IP configurations. Inner server configurations on the same public IP should
come later or the static configuration would hide them dynamic IP configurations
should never use the same IP address

Parameters
Parameter Description
interface handle Interface handle of the public NAT

device on which to create a static
association

ipPublic Public IP address, network byte
order

ipPrivate Private IP address, network byte
order

Return
Value Meaning
TM_ENOMEM Insufficient memory or too many

triggers already
TM_ENOERROR Newly allocated trigger, ip's and

ports initialized
TM_EINVAL Erroneous use, for details enable

TM_NAT_TRACE

Optional Protocols

7.61

tfNatConfigDynamic

#include <trsocket.h>

int tfNatConfigDynamic
(
ttUserInterface interfaceHandle,
ttUserIpAddress ipPublic
);

Function Description
Allow automatic temporary association of public with private IP addresses
associations will expire after TM_NTRTTL_DYNAMIC seconds of no traffic may
be called multiple times on a public NAT interface, with different public IP
addresses. Later calls will specify the most used public IP addresses. Should be
called after tfNatConfigStatic() if called. Otherwise the statically assigned private
system may commandeer a dynamic IP address. This is not harmful, just unlikely
to be useful.

Parameters
Parameter Description
interface handle Interface handle of the public NAT

device on which to create a
dynamic association

ipPublic Public IP address, network byte
order

Return
Value Meaning
TM_ENOMEM Insufficient memory or too many

triggers already
TM_ENOERROR Newly allocated trigger, ip's and

ports initialized
TM_EINVAL Erroneous use, for details enable

TM_NAT_TRACE

Turbo Treck Real-Time TCP/IP User’s Manual

7.62

tfNatConfigMaxEntries

#include <trsocket.h>

void tfNatConfigMaxEntries
(
int maxentries
);

Function Description
Set the maximum number of triggers for NAT to track on a public
interface. This maximum will apply to all public interfaces until changed
again The default is 64 (TM_DEF_NAT_MAX_ENTRIES in trmacro.h)

Parameters
Parameter Description
 maxentries Maximum simultaneous triggers

Returns
Return Meaning
None

Optional Protocols

7.63

tfNatDump

#include <trsocket.h>

void tfNatDump
(
ttUserInterface interfaceHandle
);

Function Description
Displays details of the current set of NAT triggers to stderr.
 #define TM_NAT_DUMP in trsystem.h to enable, or comment out to save code.

Parameters
Parameter Description
interfaceHandle Interface handle of the NAT device

from which to retrieve information

Returns
Return Meaning
None

Turbo Treck Real-Time TCP/IP User’s Manual

7.64

PPP Interface
Introduction to PPP
The Point-to-Point Protocol (usually referred to as PPP) is a low level protocol that
performs two basic functions. It establishes a link between two peers, and it main-
tains that link. This protocol communicates through the hardware layer to the PPP
layer on a peer system. Because communication takes place between two machines
that have the same authority in the negotiation process, neither system can be
considered a client or a server.

Let’s examine how PPP creates a link and communicates between two machines.
Communication is established in essentially three phases:

Link Control Protocol (LCP)
Negotiates options and establishes the link between two systems.

Authentication
This takes place after LCP option negotiation. It is a request for a peer machine to
identify itself with some form of password scheme. We will discuss some of these
methods later in this document. While authentication is optional, it is widely used
with ISP’s and other dial-ins that require secure logins.

Network Control Protocol (NCP)
Configures upper level protocols to operate over PPP. For example, our implemen-
tation of PPP uses IPCP (Internet Protocol Control Protocol).

PPP Negotiation
The first phase, LCP, is responsible for negotiating various options that will be
enabled, disabled, or given specific values during communication. LCP negotiation
makes PPP more effective than SLIP, Kermit, Z-Modem, and many of the other early
peer-to-peer protocols. Unlike PPP, these early protocols did not have robust
schemes for negotiating options, and they were not extensible. Newer versions of
PPP may contain more options than previous versions, but can still effectively
communicate with them.

Each system knows how it would like to receive data (the most efficient way, or
options required by a system administrator), and tells its peer by sending a
Configure-Request (Conf-Req). A Conf-Req specifies options such as
authentication, control field compression, address field compression, Maximum
Receive Unit (MRU), Magic Number, and many others. If a system receives a
Conf-Req and all of the requested options are acceptable it replies with a Configure-
Acknowledge (Conf-Ack).

Optional Protocols

7.65

The Configure-Acknowledge tells the sender of the Conf-Req that all the requested
options are acceptable, have been enabled, and it is ready to start communicating.

Because some systems may have certain options disabled, or have version of PPP
that does not support all the options, they may not be able to comply with a set of
options a peer might request. For example, if a machine requests the MRU option
set to 3000 bytes, and the peer system could not send data in blocks that large, it
would return a Configure-Negative-Acknowledge (Conf-Nak). The Conf-Nak
includes the options that the receiver of the Conf-Req found unacceptable, and a
suggestion for an appropriate value. When a system receives a Conf-Req that
contains options it is unfamiliar with, it responds with a Configure-Reject (Conf-
Rej). It is similar to the Conf-Nak, in that it contains only those options that are
unacceptable but it does not offer an alternative. If a system receives a Conf-Rej
reply to its Conf-Req, it must send a new Conf-Req without the unfamiliar options,
and exclude them from any future Conf-Req messages.

Sample LCP Negotiation

Here is a sample negotiation between two machines:

System X sends a Conf-Req to System Y that asks for several options:

• I would like you to send my PPP datagrams in blocks of
3000 bytes (MRU option set to 3000)

• I can handle compressed protocol field compression;
enable this option

• I would also like you to identify yourself, let’s use CHAP.

System Y looks at what System X asked for, and formulates a response

• I don’t know what protocol field compression is.

Because System Y doesn’t understand protocol field compression, it must send a
Conf-Rej containing that option.

After receiving the Conf-Rej, System X must now send another Conf-Req, but
it may not ask for protocol field compression again.

• I would like you to send my PPP datagrams in blocks of
3000 bytes (MRU option set to 3000)

• I would like you to authenticate using CHAP

Turbo Treck Real-Time TCP/IP User’s Manual

7.66

System Y looks at the new set of options from System X, and formulates another
reply:

• I don’t know how to use CHAP, let’s use PAP
instead

This last reply was a Conf-Nak. As you can see, this message does not necessarily
instruct System X to discard these options. It merely tells the peer that certain
attributes are unacceptable and offers values or attributes that are more agreeable.

System X must send another Conf-Req:

• I would like my PPP datagrams in 3000 byte blocks
• I would like you to identify yourself using PAP

Because System X accepted the hints offered by System Y and included them in
this Conf-Req, System Y will send a Conf-Ack that would look like this:

• I am going to send you data in 3000 byte blocks
• I will use PAP to identify myself

This is only one half of the LCP process. Both systems will send Conf-Reqs nearly
simultaneously. In terms of our example negotiation, System Y would also send a
Conf-Req to describe how it would like to receive its data as well.

PPP and Authentication
On some systems, a secure login is desirable. These systems could be an ISP, a
business network with some form of remote access, or any system that must be
mindful of what other systems should or should not have access. LCP negotiates
what authentication method if any, will be used. Authentication actually taking
place is a different phase. There are a variety of authentication methods, and we
will briefly examine the most common three:

Password Authentication Protocol (PAP)
This is one of the earliest and simplest of the authentication methods available.
With this method, both peers know a secret and one will send a user name and
password when it is requested. Of course, if authentication is intended to be bi-
directional, there should be two sets of secrets. PAP’s weakness is that the user
name and password are sent across the wire in clear-text and leaves the possibility
that these secrets can be intercepted.

Optional Protocols

7.67

Systems that use PAP typically do not use re-authentication, though it is not
impossible. If re-authentication is necessary, LCP must renegotiate and utilize PAP
again. For more information regarding PAP, please refer to RFC 1334.

Challenge-Handshake Authentication Protocol (CHAP)
This authentication method is more secure than PAP because it does not send a
clear-text user name and password. Instead, when a peer wishes to validate another,
it sends a name and a randomly generated number. The peer attempting to gain
access uses the name given by the authenticator to obtain a plain text secret (it may
prompt the user, or look it up in a database). The secret is then hashed with the
random number and the result is sent to the authenticator. The original sender then
uses the same algorithm and compares the result with the value it received from its
peer. Based on the comparison, a success or failure message is sent to the system
requesting access. Unlike PAP, CHAP has the ability to send periodic re-
authentication requests without renegotiating. More information on CHAP can be
found in RFC 1994.

Microsoft-Challenge-Handshake Authentication Protocol (MS-CHAP)
This authentication method is not currently supported in the Turbo Treck stack.
This authentication method is very similar to regular CHAP except for a few details:
Standard CHAP uses 05 for the hashing algorithm while MS-CHAP uses 08. It does
not require the authenticator to store a clear-text or reversibly
encrypted password. The authenticator has the ability to choose the number of
retries as well as the ability to change passwords. Unlike CHAP, MS-CHAP will
give a reason for failure (for example: incorrect password). More information on
MS-CHAP is available in RFC 2433.

Internet Protocol Control Protocol (IPCP)
The Internet Protocol Control Protocol enables, disables, and configures various IP
modules on each end of the peer-to-peer link. This protocol has its own list of
options such as various types of compression, MTU discovery, specifying IP
addresses, and several more. It is important to remember no IP packets can be sent
before PPP is in the NCP phase. In terms of the current Turbo Treck stack, the NCP
phase consists solely of IPCP. This means a PPP link is first negotiated with LCP,
authentication takes place (if it has been requested in LCP), and then IPCP establishes
communication with the IP layer on the peer machine. For detailed information
about the options within IPCP, please refer to RFC 1332.

IPCP in the Turbo Treck stack also includes options to obtain the addresses of
Domain Name Servers (DNS servers). Domain name servers are remote servers that
match domain names (such as elmic.com) to an appropriate IP address. Detailed
information on the DNS options within IPCP and implementation can be found in
RFC 1877.

Turbo Treck Real-Time TCP/IP User’s Manual

7.68

tfChapRegisterAuthenticate

#include <trsocket.h>

int tfChapRegisterAuthenticate
(
ttUserInterface interfaceHandle,
ttChapAuthenticateFunctPtr authFunctionPtr
);

Function Description
When acting as a PPP server, a function must be called to validate an incoming
authentication request. This function is passed the username and password from
the peer by the PPP layer. The function must return 1 for a valid username/password
or 0 for an invalid username/password.

The prototype for the authentication function is defined to be:

char *myChapAuthenticate(char *username);
which returns the secret corresponding to this user.

If the user name passed to myChapAuthenticate is invalid, this function should
return TM_CHAP_INVALID_USER. Should the password for this user be empty,
this function should return TM_CHAP_NULL_PASSWORD.

Parameters
Parameter Description
interfaceHandle The interface for which to use this

authentication routine
authFunctionPtr The pointer to the function to

authenticate the remote user.

Returns
Value Meaning
0 Success
TM_EINVAL The interface handle is invalid

Optional Protocols

7.69

tfGetPppDnsIpAddress

#include <trsocket.h>

int tfGetPppPeerIpAddress
(
ttUserInterface interfaceHandle,
ttUserIpAddress dnsIpAddressPtr,
int flag
);

Function description
This function is used to return the DNS Addresses as negotiated by the remote PPP
server. This function can only be used with PPP devices. If no DNS address is
negotiated, the IP address returned will be 0.0.0.0

Parameters
Parameter Description
interface handle The interface handle to get the DNS

IP address from.
dnsIpAddressPtr The pointer to the buffer where the

DNS IP address will be stored
flag One of the following:

TM_DNS_PRIMARY or
TM_DNS_SECONDARY

Returns
Value Meaning
0 Success
TM_EINVAL One of the parameters is null or the

device is a LAN device
TM_ENETDOWN Interface is not configured

Turbo Treck Real-Time TCP/IP User’s Manual

7.70

tfGetPppPeerIpAddress

#include <trsocket.h>

int tfGetPppPeerIpAddress
(
ttUserInterface interfaceHandle,
ttUserIpAddress * ifIpAddress
);

Function Description
This function is used to get the PPP address that the remote PPP has used
(respectively SLIP address of the remote SLIP). This function should be called after
tfOpenInterface has completed successfully.

If a default gateway needs to be added for that interface, then the retrieved IP
address should be used to add a default gateway through the corresponding
interface.

If a static route needs to be added for that interface, then the retrieved IP address
should be used to add a static route through the corresponding interface.

Parameters
Parameter Description
interfaceHandle The interface Handle to get the Peer

IP address from.
ifIpAddressPtr The pointer to the buffer where the

Peer PPP IP address will be stored
into.

Returns
Value Meaning
0 Success
TM_EINVAL One of the parameters is null, or the

device is a LAN device
TM_ENETDOWN Interface is not configured

Optional Protocols

7.71

tfPapRegisterAuthenticate

#include <trsocket.h>

int tfPapRegisterAuthenticate

(
ttUserInterface interfaceHandle,
ttPapAuthenticateFunctPtr authFunctionPtr
);

Function Description
When acting as a PPP server, a function must be called to validate an incoming
authentication request. This function is passed the username and password from
the peer by the PPP layer. The function must return 1 for a valid username/password
or 0 for an invalid username/password.

The prototype for the authentication function is defined to be:

int myPapAuthenticate(char *username, char password);

Parameters
Parameter Description
interfaceHandle The interface to use this authentica-

tion routine for
authFunctionPtr The function to call to authenticate

the remote user

Returns
Value Meaning
0 Success
TM_EINVAL The interface handle is invalid

Turbo Treck Real-Time TCP/IP User’s Manual

7.72

tfPppSetOption

#include <trsocket.h>

int tfPppSetOption
(
ttUserInterface interfaceHandle,
int protocolLevel,
int remoteLocalFlag,
int optionName,
const char * optionValuePtr,
int optionLength
);

Function Description
This function is used to set the PPP options that we wish to negotiate as well as
those options that we will allow. This allows us to change the link away from the
default parameters described in RFC1661.

Parameters

Parameter Description
interfaceHandle The Interface handle to set these

options for
protocolLevel The protocol which this option

should be applied. Current
supported protocols are:
TM_PPP_LCP_PROTOCOL
TM_PPP_IPCP_PROTOCOL
TM_PPP_PAP_PROTOCOL
TM_PPP_CHAP_PROTOCOL

remoteLocalFlag This flag describes whether the
option is for what we want to use
for our side of the link
(TM_PPP_OPT_WANT) or if it
what we will allow the remote side
to use (TM_PPP_OPT_ALLOW)

optionName The name of the option (see below)
optionValuePtr The value of the option (see below)
optionLength The length of the option (see

below)

Optional Protocols

7.73

LCP (TM_PPP_LCP_PROTOCOL):
Option Name Len Meaning
TM_LCP_ADDRCONTROL_COMP 1 A boolean value

specifiying whether
address field compression
should be used.
Default: OFF

TM_LCP_PROTOCOL_COMP 1 A boolean value
specifying whether
protocol field compression
should be used.
 Default: OFF

TM_LCP_MAGIC_NUMBER 1 A boolean value indicating
whether to specify a magic
number. Default: OFF

TM_LCP_MAX_FAILURES 1 Sets the maximum number
of LCP configuration
failures. This determines
the maximum number of
configuration NAKs that
will be sent before we
reject an option. Default: 5

TM_LCP_MAX_RECV_UNIT 2 Specifies the largest MRU
that we will allow and the
default MRU that we want
to use. Default: 1500

TM_LCP_ACCM 4 Specifies the async control
character map that we
want to use, and if we
want to allow the remote
side to be able to set his
ACCM.Default: 0xffffffff

TM_LCP_AUTH_PROTOCOL 2 The protocol to use when
authenticating to our peer,
and vice versa (e.g. PAP or
CHAP). Possible value are
TM_PPP_PAP_PROTOCOL
and
TM_PPP_CHAP_PROTOCOL.

Default: No authentication

Turbo Treck Real-Time TCP/IP User’s Manual

7.74

TM_LCP_TERM_RETRY 1 Sets the maximum number of
Terminate requests that the
local peer will send (without
receiving a Terminate Ack)
before terminating the
connection. Default: 3

TM_LCP_CONFIG_RETRY 1 Sets the maximum number of
LCP config requests that will
be sent without receiving
a LCP ack/nak/reject.
remoteLocalFlag has no
effect.Default: 10

TM_LCP_TIMEOUT 1 Sets the LCP retransmission
timeout in seconds.
Default: 3 seconds

TM_LCP_QUALITY_PROTOCOL 4 Setting this option enables
link quality monitoring. The
option value is specified in
hundredths of a second, and
it configures the maximum
time to delay (i.e. LQR timer
period) between sending
Link-Quality-Report mes-
sages (refer to RFC-1989,
Reporting-Period field of the
Quality-Protocol Configura-
tion Option). This option can
be set for either the local or
the remote end of the link,
however the direction in
which it applies is the
opposite of what one would
expect: when
remoteLocalFlag is set to
TM_PPP_OPT_WANT, this
specifies an option value that
we want the remote end of
the link to use, and when
remoteLocalFlag is set to
TM_PPP_OPT_ALLOW, this
specifies an option value that
we will allow the remote end
to configure us to use. If a
non-zero option value is

Optional Protocols

7.75

specified, the LQR timer is
started with the specified
timeout period to pace the
sending of Link-Quality-
Report messages, and this
timer is restarted whenever a
Link-Quality-Report message
is sent. If the specified option
value is 0, no LQR timer is
used, but instead a Link-
Quality-Report message is
sent as a response every time
one is received from the peer.
At least one side of the link
must use the LQR timer to
pace the sending of Link-
Quality-Report messages
when link quality monitoring
is enabled, therefore this
option value should not be
set to 0 for both ends of the
link.

LQM (TM_LCP_QUALITY_PROTOCOL)
Option Name Len Meaning
TM_LCP_QUALITY_PROTOCOL 4 Setting this option enables

link quality monitoring. The
option value is specified in
hundredths of a second, and
it configures the maximum
time to delay (i.e. LQR timer
period) between sending
Link-Quality-Report mes-
sages (refer to RFC-1989,
Reporting-Period field of the
Quality-Protocol Configura-
tion Option). This option can
be set for either the local or
the remote end of the link,
however the direction in
which it applies is the
opposite of what one would
expect: when
remoteLocalFlag is set to

Turbo Treck Real-Time TCP/IP User’s Manual

7.76

TM_PPP_OPT_WANT, this
specifies an option value that
we want the remote end of
the link to use, and when
remoteLocalFlag is set to
TM_PPP_OPT_ALLOW, this
specifies an option value that
we will allow the remote end
to configure us to use. If a
non-zero option value is
specified, the LQR timer is
started with the specified
timeout period to pace the
sending of Link-Quality-
Report messages, and this
timer is restarted whenever a
Link-Quality-Report message
is sent. If the specified option
value is 0, no LQR timer is
used, but instead a Link-
Quality-Report message is
sent as a response every time
one is received from the peer.
At least one side of the link
must use the LQR timer to
pace the sending of Link-
Quality-Report messages
when link quality monitoring
is enabled, therefore this
option value should not be
set to 0 for both ends of the
link.

IPCP (TM_PPP_IPCP_PROTOCOL)
Option Name Len Meaning
TM_IPCP_COMP_PROTOCOL 2 Specifies the type of

compression to use over the
link. Currently, only VJ TCP/
IP header compression is
available which is defined as
TM_PPP_COMP_TCP_PROTOCOL
Default: No Compression

TM_IPCP_MAX_FAILURES 1 Sets the maximum number of
IPCP configuration failures.
This determines the maximum

Optional Protocols

7.77

number of configuration
NAKsthat will be sent before
we reject an option.
Default: 5

TM_IPCP_VJ_SLOTS 1 The number of slots used to
store state information for
each side of a VJ compressed
link. This value is determined
by the maximum number of
concurrent TCP sessions that
you will have. Default: 1
slot.

TM_IPCP_IP_ADDRESS 4 Specifies if we want to allow
the remote to set their IP
address. Please see “setting a
peer PPP IP address” below
for explanations.
Default: Don’t Allow

TM_IPCP_DNS_PRI 4 Specifies the IP addresses of
the Primary DNS Server we
will allow the remote to use or
the Primary DNS server that
we ant to us. Se the section
setting a PPP IP Address
Default: Don’t Allow

TM_IPCP_DNS_SEC 4 Specifies the IP Address of
the Secondary DNS server we
will allow the remote to use or
the Secondary DNS server
that we want to use. Se the
section setting a PPP IP
Address. Default: Don’t
Allow

PPP (PPP_PROTOCOL)
Option Name Len Meaning
TM_PPP_SEND_BUFFER_SIZE 2 Length of data buffered by

the PPP link layer (but not
beyond the end of a packet)
before the device driver send
function is called. Default: 1
byte

TM_IPCP_RETRY 1 Sets the maximum number of

Turbo Treck Real-Time TCP/IP User’s Manual

7.78

IPCP config requests that will
be sent without receiving a
IPCP nak/ack/reject.
remoteLocalFlag has no
effect. Default: 10

TM_IPCP_TIMEOUT 1 Sets the IPCP retransmission
timeout value (in seconds).
remoteLocalFlag has no
effect. Default: 1 Second

TM_PPP_PROTOCOL
Option Name Len Meaning
TM_PPP_SEND_BUFFER_SIZE 2 Length of data buffered by

the PPP link layer (but not
beyond the end of a packet)
before the device driver send
function is called.Default: 1
byte

Setting a PPP IP address:

The following applies to all of the IP Address optionNames
TM_IPCP_IP_ADDRESS, TM_IPCP_DNS_PRI and TM_IPCP_DNS_SEC.

• If tfPppSetOption is not used with the IP Address optionName
(default) then the remote will not be allowed to request its IP and/or
DNS IP addresses.

• If tfPppSetOption is called with the IP Address optionNames,
remoteLocalFlag TM_PPP_OPT_ALLOW, and optionValuePtr points
to an IP address whose value is 0.0.0.0, then the remote will be allowed
to request that its IP/DNS IP address be set to anything except 0.0.0.0.

For example:

ttUserIpAddress remoteIpAddress;
remoteIpAddress = inet_addr (“0.0.0.0”);

tfPppSetOption (interfaceHandle,
TM_PPP_IPCP_PROTOCOL,
TM_PPP_OPT_ALLOW,
TM_IPCP_IP_ADDRESS,
(const char *)&remoteIpAddress, 4);

Optional Protocols

7.79

• If tfPppSetOption is called with an IP Address optionName,
remoteLocalFlag TM_PPP_OPT_ALLOW, and optionValuePtr points
to an IP address whose value is not 0.0.0.0, two situations may occur.
The remote will be allowed to set its IP/DNS IP address to this value,
or will be returned this value, if it requests 0.0.0.0.

PAP (TM_PPP_PAP_PROTOCOL):

Option Name Len Meaning
TM_PAP_USERNAME Any Sets the username to use with

PAP Client Default: NONE
TM_PAP_PASSWORD Any Sets the password to use with

PAP Default: NONE
TM_PAP_RETRY 1 Sets the maximum number of

PAP authentication requests
that will be sent without
receiving an ACK/NAK
remoteLocalFlag has no effect.
Default: 10

TM_PAP_TIMEOUT 1 Sets the PAP retransmission
timeout value in seconds.
remoteLocalFlag has no effect.
Default: 3 Seconds

Turbo Treck Real-Time TCP/IP User’s Manual

7.80

CHAP (TM_PPP_CHAP_PROTOCOL):
Option Name Len Meaning
TM_CHAP_USERNAME Any Sets the username to use with

CHAP Client Default: NONE
TM_CHAP_SECRET Any Sets the secret to use with

CHAP
Default: NONE

TM_CHAP_RETRY 1 Sets the maximum number of
CHAP challenges that will be
sent without receiving a CHAP
response remoteLocalFlag has
no effect. Default: 10

TM_CHAP_TIMEOUT 1 Sets the CHAP retransmission
timeout value in seconds.
remoteLocalFlag has no effect.
Default: 3 Seconds

Returns
Value Meaning
0 Success
TM_ENOPROTOPT protocolLevel or optionName is

invalid
TM_EINVAL The option value or length is

invalid

Optional Protocols

7.81

optionLength
optionLength should be the size of the data type, optionValuePtr is pointing to,
except for the TM_PAP_USERNAME, TM_PAP_PASSWORD,
TM_CHAP_USERNAME, and TM_CHAP_SECRET options, where
optionValuePtr points to the first byte of an array, and where optionLength is
the size of the array optionValuePtr is pointing to.
The data types are as follows:

TM_PPP_LCP_PROTOCOL

TM_PPP_PROTOCOL

TM_PPP_CHAP_PROTOCOL

TM_PPP_IPCP_PROTOCOL

TM_PPP_PAP_PROTOCOL

unsigned short

unsigned char

char

unsigned char

unsigned char

unsigned short

unsigned long

unsigned short

unsigned char

unsigned char

unsigned char

unsigned char

unsigned long

unsigned char

unsigned char

char

unsigned char

unsigned char

char

char

unsigned char

unsigned char

unsigned short

TM_LCP_ADDRCONTROL_COMP

TM_LCP_PROTOCOL_COMP

TM_LCP_MAGIC_NUMBER

TM_LCP_MAX_RECV_UNIT

TM_LCP_ACCM

TM_LCP_AUTH_PROTOCOL

TM_LCP_TERM_RETRY

TM_LCP_CONFIG_RETRY

TM_LCP_TIMEOUT

TM_IPCP_COMP_PROTOCOL

TM_IPCP_VJ_SLOTS

TM_IPCP_IP_ADDRESS

TM_IPCP_RETRY

TM_IPCP_TIMEOUT

TM_PAP_USERNAME

TM_PAP_PASSWORD

TM_PAP_RETRY

TM_PAP_TIMEOUT

TM_CHAP_USERNAME

TM_CHAP_SECRET

TM_CHAP_RETRY

TM_CHAP_TIMEOUT

TM_PPPSEND_BUFFER_SIZE

ProtocolLevel OptionName data type

Turbo Treck Real-Time TCP/IP User’s Manual

7.82

tfSetPppPeerIpAddress

#include <trsocket.h>

int tfSetPppPeerIpAddress
(
ttUserInterface interfaceHandle,
ttUserIpAddress ifIpAddress
);

Function Description
This function is used to set a default remote PPP/SLIP IPaddress. This IP address
will be used as the default remote point to point IP address, in case no remote IP
address is negotiated with PPP (see tfPppSetOption), or for SLIP. If no IP address is
set with this function, (and no IP address is negotiated with the remote PPP for
PPP), then the local IP address + 1 will be used as the default IP address for the
remote PPP (or SLIP) for routing purposes (see tfGetPppPeerIpAddress).
tfSetPppPeerIpAddress can only be called between tfAddInterface (or
tfCloseInterface) and tfOpenInterface.

Parameters
Parameter Description
interfaceHandle The interface handle to update the

Peer IP address in
ifIpAddress The IP address to use for routing

purposes for the remote PPP system

Returns
Value Meaning
0 Success
TM_EINVAL The interface handle is null, or the

device is a LAN device
TM_EISCONN PPP connection is already estab-

lished

Optional Protocols

7.83

tfUseAsyncPpp

#include <trsocket.h>

ttUserLinkLayer tfUseAsyncPpp
(
ttUserLnkNotifyFuncPtr linkNotifyFuncPtr
);

Function Description
This function is used to initialize the asynchronous PPP client link layer. When link
up or link down events occur, the stack will call the function passed in. If you do
not need notification of events then the parameter should be set to
TM_LNK_NOTIFY_FUNC_NULL_PTR.

Your prototype for your notification function should look like this:

void myPppNotifyFunction(ttUserInterface interfaceHandle,
 int flags);
This function is called with the interface handle and a flag. The flag is set to
one of the following:

TM_LL_OPEN_COMPLETE: PPP Device is ready to accept data from the user.
TM_LL_CLOSE_STARTED: PPP Device has started to close this link.
TM_LL_CLOSE_COMPLETE: PPP Device has closed
TM_LL_LCP_UP: LCP negotiation has completed.
TM_LL_PAP_UP: PAP authentication has completed.
TM_LL_CHAP_UP: CHAP authentication has completed.
TM_LL_LQM_UP: LQM is enabled on the link.
TM_LL_LQM_DISABLED: LQM is disabled on the link.
TM_LL_LQM_LINK_BAD: Link quality is bad, user recovery should be
attempted.

These events may be used to monitor the status of the PPP connection. The PPP
connection should not be used before a TM_LL_OPEN_COMPLETE event is
received, and the device should not be restarted (after a tfCloseInterface) before
a TM_LL_CLOSE_COMPLETE event is received.

Turbo Treck Real-Time TCP/IP User’s Manual

7.84

From these events, it is also possible to determine why PPP negotiation failed.
For instance, if authentication fails, a TM_LL_LCP_UP event is first received
indicating that the physical link has been negotiated. However, if authentication
fails, the next event will be TM_LL_CLOSE_STARTED and then
TM_LL_CLOSE_COMPLETE since the link must be closed if negotiation fails. If
authentication is successful the events that are received are TM_LL_LCP_UP,
TM_LL_PAP_UP or TM_LL_CHAP_UP and then TM_LL_OPEN_COMPLETE.

Parameters

Parameter Description
linkNotifyFuncPtr The function to call to notify PPP

events or
TM_LNK_NOTIFY_FUNC_NULL_PTR
if notification is not needed
The events are:
TM_LL_OPEN_COMPLETE
TM_LL_CLOSE_STARTED
TM_LL_CLOSE_COMPLETE
TM_LL_LCP_UP
TM_LL_PAP_UP
TM_LL_CHAP_UP

Returns
The PPP Client link layer handle or NULL if there is an error

Optional Protocols

7.85

tfUseAsyncServerPpp

#include <trsocket.h>

ttUserLinkLayer tfUseAsyncServerPpp
(
ttUserLnkNotifyFuncPtr linkNotifyFuncPtr
);

Function Description
This function is used to initialize the asynchronous PPP server link layer. When
link up or link down events occur, the stack will call the function passed in. If you
do not need notification of events then the parameter should be set to
TM_LNK_NOTIFY_FUNC_NULL_PTR.

Your prototype for your notification function should look like this:

void myPppNotifyFunction(ttUserInterface interfaceHandle,
 int flags);
This function is called with the interface handle and a flag. The flag is set to
one of the following:

TM_LL_OPEN_COMPLETE: PPP Device is ready to accept data from the user.
TM_LL_CLOSE_STARTED: PPP Device has started to close this link.
TM_LL_CLOSE_COMPLETE: PPP Device has closed
TM_LL_LCP_UP: LCP negotiation has completed.
TM_LL_PAP_UP: PAP authentication has completed.
TM_LL_CHAP_UP: CHAP authentication has completed.
TM_LL_LQM_UP: LQM is enabled on the link.
TM_LL_LQM_DISABLED: LQM is disabled on the link.
TM_LL_LQM_LINK_BAD: Link quality is bad, user recovery should be
attempted.

These events may be used to monitor the status of the PPP connection. The PPP
connection should not be used before a TM_LL_OPEN_COMPLETE event is re-
ceived, and the device should not be restarted (after a tfCloseInterface) before a
TM_LL_CLOSE_COMPLETE event is received.

From these events, it is also possible to determine why PPP negotiation failed.
For instance, if authentication fails, a TM_LL_LCP_UP event is first received
indicating that the physical link has been negotiated. However, if authentication
fails, the next event will be TM_LL_CLOSE_STARTED and then
TM_LL_CLOSE_COMPLETE since the link must be closed if negotiation fails. If
authentication is successful the events that are received are TM_LL_LCP_UP,
TM_LL_PAP_UP or TM_LL_CHAP_UP and then TM_LL_OPEN_COMPLETE.

Turbo Treck Real-Time TCP/IP User’s Manual

7.86

Parameters
Parameter Description
linkNotifyFuncPtr The function to call to notify PPP

events or
TM_LNK_NOTIFY_FUNC_NULL_PTR
if notification is not needed
The events are:
TM_LL_OPEN_COMPLETE
TM_LL_CLOSE_STARTED
TM_LL_CLOSE_COMPLETE
TM_LL_LCP_UP
TM_LL_PAP_UP
TM_LL_CHAP_UP

Returns
The PPP Server link layer handle or NULL if there is an error

Optional Protocols

7.87

Link Quality Monitoring (LQM)
PPP LQM enables the application to determine when PPP link quality has
degraded to the point where recovery is necessary. PPP LQM does this via the
exchange of Link-Quality-Report protocol messages at a negotiated interval
(referred to as the Reporting-Period of the LQR timer). A Link-Quality-Report
message contains the sender’s state information w/ regards to how many packets
and bytes have been successfully sent and received on the link. When the peer
receives the Link-Quality-Report message, it can compare these counts against
it’s own similar state information to determine link quality, and then if it judges
link quality bad, can recover the link (i.e. by bringing the link down and then up
again, or some other application-specific recovery algorithm). The link can have a
transient failure, in which case some amount of hysteresis is needed to average
link quality over some multiple of the Reporting-Period so that transient link
failures do not cause the link to go up and down too frequently.

PPP LQM does not specify the specific policy to be used to judge link quality,
nor does it specify how to recover the link when link quality is judged bad. Since
we believe that any user planning to use PPP LQM is sophisticated enough to
implement their own link quality determination policy and recovery algorithm,
also since the specific implementation will likely vary significantly depending on
the application, we have decided not to implement any default link quality
determination policy or recovery algorithm, but instead we provide a flexible API
which enables the user to implement their own.

Description
First, before doing anything else, if link quality monitoring is desired, the user
must #define TM_PPP_LQM in trsystem.h, and then rebuild all of the Treck TCP/
IP code. tfUsePppLqm is called to allocate the LQM state vector. Before the link
is opened, the user calls tfPppSetOption to set the
TM_LCP_QUALITY_PROTOCOL configuration option, and if the user wants to
register a link quality monitoring function, then they also negotiate a non-zero
value for the LQR timer. After PPP opens the link, PPP calls tfLqmEnable which
starts the LQR timer. Either before or after PPP opens the link, but after the call to
tfUsePppLqm, the user calls tfLqmRegisterMonitor to register their link quality
monitoring function. Whenever a LQR is received, the user’s link quality
monitoring function is called, and is it passed incoming and outgoing packet and
byte counts (derived from information contained in this LQR and also from the
previously received LQR) and the elapsed time since the this function was last
called. The user’s link quality monitoring function then determines the link
quality based on these counts and the delta time, and returns 0 if link quality is
good, and 1 if it is bad (or greater than one to short-circuit the hysteresis and
cause link recovery to occur sooner). These link quality counts are accumulated
over multiple calls to the user’s link quality monitoring function, and if they
surpass a specified max failure count within a specified number of times that this

Turbo Treck Real-Time TCP/IP User’s Manual

7.88

function was called, then the user is notified that the link is bad via a PPP
callback flag, after which they should attempt recovery of the link.

Code Example
#include <trsocket.h>

/* Parameters controlling determination of link quality */
#define LQM_HYSTERESIS_MAX_FAILURES 3
#define LQM_HYSTERESIS_SAMPLES 4

/* Function prototype for link quality monitoring function */
ttUser8Bit myLinkQualityMonitor(
 ttUserInterface interfaceHandle,
 int reasonCode,
 unsigned long timeElapsedMsec,
 ttLqrCountDeltasPtr countDeltasPtr,
 ttConstLqrCountsPtr countsPtr,
 ttUser32Bit outLqrs,
 ttUser32Bit outPackets,
 ttUser32Bit outOctets);

/* Function prototype for PPP link notification function */
void myPppLinkNotify(ttUserInterface interfaceHandle, int
flag);

ttUserInterface interfaceHandle;
char errorMsgBuf[256];

/* Status flags */
int lqmEnabledStatus;
int linkBadStatus;
int linkQualityMonitorRegisteredStatus;

int main(void)
{
 int errorCode;

/* initialization */
 lqmEnabledStatus = 0;
 linkBadStatus = 0;
 linkQualityMonitorRegisteredStatus = 0;

/* start Treck */
 errorCode = tfStartTreck();
 …

/* initialize PPP */
 linkLayerHandle = tfUseAsyncPpp(
 (ttUserLnkNotifyFuncPtr) myPppLinkNotify);

Optional Protocols

7.89

/* add the PPP interface */
 interfaceHandle = tfAddInterface(
/* name of the device */
 “MYDEVICE.001”,
/* Link Layer to use */
 linkLayerHandle,
 …

/* initialize LQM with a 3 second retransmission timer */
 errorCode = tfUsePppLqm(
 interfaceHandle,
 (ttUser32Bit) 3000);

/* set PPP options for negotiation */
 errorCode = tfPppSetOption(
 interfaceHandle,
 …

/* open the PPP interface */
 errorCode=tfOpenInterface(
 interfaceHandle,
 …

/* main polling loop */
 while(1)
 {
 if (lqmEnabledStatus == 1)
 {
 if (linkQualityMonitorRegisteredStatus == 0)
 {
 linkQualityMonitorRegisteredStatus = 1;

/* after LQM is enabled, register the link quality monitor */
 errorCode = tfLqmRegisterMonitor(
 interfaceHandle,
 (ttLqmMonitorFuncPtr)
myLinkQualityMonitor,
 LQM_HYSTERESIS_MAX_FAILURES,
 LQM_HYSTERESIS_SAMPLES);
 if (errorCode != TM_ENOERROR)
 {
 tfSPrintF(
 errorMsgBuf,
 “tfLqmRegisterMonitor failed ‘%s’\n”,
 tfStrError(errorCode));
 tfKernelWarning(
 “main”,
 errorMsgBuf);
 }

Turbo Treck Real-Time TCP/IP User’s Manual

7.90

 }
 }

 if (linkBadStatus == 1)
 {
 linkBadStatus = 0;

/* perform custom link recovery processing */
 …
 }

/* other stuff */
 …
 }
}

void myPppLinkNotify(ttUserInterface interfaceHandle, int
flag)
{
 switch (flag)
 {
 case TM_LL_LQM_LINK_BAD:
 linkBadStatus = 1;
 break;

 case TM_LL_LQM_UP:
 lqmEnabledStatus = 1;
 break;

 case TM_LL_LQM_DISABLED:
 lqmEnabledStatus = 0;
 break;

/* other stuff */
 …
 }
}

ttUser8Bit myLinkQualityMonitor(
 ttUserInterface interfaceHandle,
 int reasonCode,
 unsigned long timeElapsedMsec,
 ttLqrCountDeltasPtr countDeltasPtr,
 ttConstLqrCountsPtr countsPtr,
 ttUser32Bit outLqrs,
 ttUser32Bit outPackets,
 ttUser32Bit outOctets)
{
 int linkQuality;
 int outboundLqrsInPipeline;

Optional Protocols

7.91

 linkQuality = 0;
 switch(reasonCode)
 {
 case TM_LQM_MONITOR_LQR:
/* calculate link quality of the outgoing link */
 if (countDeltasPtr->deltaLastOutPackets >
 (countDeltasPtr->deltaPeerInPackets
 + countDeltasPtr->deltaPeerInDiscards))
 {
 linkQuality += countDeltasPtr->deltaLastOutPackets
 - (countDeltasPtr->deltaPeerInPackets
 + countDeltasPtr->deltaPeerInDiscards);
 }

/* calculate link quality of the incoming link */
 if (countDeltasPtr->deltaPeerOutPackets
 > countDeltasPtr->deltaSaveInPackets)
 {
 linkQuality += countDeltasPtr->deltaPeerOutPackets
 - countDeltasPtr->deltaSaveInPackets;
 }

/* calculate number of outbound LQRs still in the pipeline */
 outboundLqrsInPipeline = (int)
 ((ttUser32Bit) 0xffffffff
 & (outLqrs - countsPtr->lastOutLqrs));
 if (outboundLqrsInPipeline > 1)
 {
 linkQuality += outboundLqrsInPipeline - 1;
 }
 break;

 case TM_LQM_MONITOR_TIMEOUT:
 linkQuality = 1;
 break;

 default:
/* this should not happen */
 tfKernelWarning(
 “myLinkQualityMonitor”,
 “unrecognized value for reasonCode”);
 break;
 }

/* require at least 2 sample periods to declare a link bad */
 if (linkQuality > LQM_HYSTERESIS_MAX_FAILURES)

Turbo Treck Real-Time TCP/IP User’s Manual

7.92

{
 linkQuality = LQM_HYSTERESIS_MAX_FAILURES;
 }

 return (ttUser8Bit) linkQuality;
}

Limitations
We do not implement a default policy for judging the quality of the link, and we
do not attempt any recovery when the link quality is judged bad. Instead, the
user must register a link quality monitoring function if they want to implement a
link quality monitoring policy, and we will give them a PPP callback (after a user-
specified amount of hysteresis has been applied) when the link quality is judged
bad so that they can attempt recovery.

Optional Protocols

7.93

Public API
tfUsePppLqm

int tfUsePppLqm
(
ttUserInterface interfaceHandle,
ttUser32Bit lqrReTxPeriodMsec
);

Function Description
tfUsePppLqm is used to initialize PPP Link Quality Monitoring (LQM), and must
be called before tfOpenInterface for each distinct PPP interface that the user
wants to monitor link quality on. After calling tfUsePppLqm but before calling
tfOpenInterface, the user should call tfPppSetOption to set the
TM_LCP_QUALITY_PROTOCOL configuration option; otherwise, LQM won’t
be used on the link (unless the peer negotiates it).

After this, it is still possible that LQM is not being used on the link because the
peer doesn’t support it. To determine if LQM is being used on the link, install a
PPP notification function (refer to tfUseAsyncPpp). When your PPP notification
function is called with the flag TM_LL_LQM_UP, this indicates that LQM has
been enabled on the link. When your PPP notification function is called with the
flag TM_LL_LQM_DISABLED, this indicates that LQM has been disabled on
the link.

Parameters
Parameter Description
interfaceHandle The PPP interface handle as returned by

tfAddInterface.
lqrReTxPeriodMsec Configures how long (in milliseconds)

we wait for the LQR response to a LQR
we sent (initiated LQR timer) before
timing out and retransmitting the LQR.
This should be chosen to be at least
twice the smooth round trip time on the
link. Setting this parameter to 0 disables
the use of a retransmission timer (not
recommended).

Returns
Value Meaning
0 Success.
TM_EINVAL The interface handle is invalid.
TM_EOPNOTSUPP Failed initializing PPP LQM.

Turbo Treck Real-Time TCP/IP User’s Manual

7.94

tfFreePppLqm

int tfFreePppLqm
(
ttUserInterface interfaceHandle
);

Function Description
tfFreePppLqm does the reverse of tfUsePppLqm, i.e. it disables LQM on the link,
deallocates any memory allocated by LQM and removes any associated timers.

Parameters
Parameter Description
interfaceHandle The PPP interface handle as

returned by tfAddInterface.

Returns
Value Meaning
0 Success.
TM_EINVAL The interface handle is invalid.

Optional Protocols

7.95

tfLqmRegisterMonitor

int tfLqmRegisterMonitor
(
ttUserInterface interfaceHandle,
ttLqmMonitorFuncPtr monitorFuncPtr,
ttUser16Bit hysteresisMaxFailures,
ttUser16Bit hysteresisSamples
);

Function Description

tfLqmRegisterMonitor enables the user to specify a policy for determining link
quality, specifically by registering a user-defined link quality monitoring function.
tfLqmRegisterMonitor should be called after the call to tfUsePppLqm for each
distinct PPP interface that the user wants to monitor link quality on. It is highly
recommended that you use a LQR timer to pace the sending of LQRs, otherwise if
the link is very bad incoming, your link quality monitoring function won’t be
called frequently enough to allow you recover the link in a timely fashion, since
without a LQR timer it is only called when a LQR is received.

The user-defined link quality monitoring function (specified by monitorFuncPtr)
must return 0 if link quality is good, and a weighted non-zero value if link quality
is bad (i.e. a value of 2 is twice as bad as a value of 1, etc.). When the accumu-
lated value of bad counts returned by your link quality monitoring function
exceeds hysteresisMaxFailures within the last hysteresisSamples times of calling
your function, you will be notified via the PPP callback flag
TM_LL_LQM_LINK_BAD (if you registered a link notification function, refer to
tfUseAsyncPpp) that the link is bad so that you can attempt recovery. The link
quality monitoring function will be called when one of the following events
happens:

 1. A timeout occurs while waiting to receive a solicited Link-Quality-Report
message from the peer. The peer negotiated for us to use a non-zero LQM
reporting period, which means that we are using the LQR timer to pace our
sending of Link-Quality-Report messages. This timer expired, and we
haven’t yet received a Link-Quality-Report message from the peer for a
Link-Quality-Report message we sent earlier (i.e. reasonCode set to
TM_LQM_MONITOR_TIMEOUT).

2. A Link-Quality-Report message is received from the peer (i.e. reasonCode
set to TM_LQM_MONITOR_LQR).

Turbo Treck Real-Time TCP/IP User’s Manual

7.96

The peer may not support LQM, in which case the link quality monitoring
function will never be called indicating that LQM is not being used on the link.

The function prototype for the link quality monitoring function (specified by
monitorFuncPtr) is defined as follows:

ttUser8Bit myLinkQualityMonitor(
 ttUserInterface interfaceHandle,
 int reasonCode,
 unsigned long timeElapsedMsec,
 ttLqrCountDeltasPtr countDeltasPtr,
 ttConstLqrCountsPtr countsPtr,
 ttUser32Bit outLqrs,
 ttUser32Bit outPackets,
 ttUser32Bit outOctets);

reasonCode can take on the values TM_LQM_MONITOR_LQR or
TM_LQM_MONITOR_TIMEOUT, depending on whether the reason for the
callback is that a Link-Quality-Report message was received
(TM_LQM_MONITOR_LQR), or that the timeout occurred before the solicited/
expected Link-Quality-Report message was received
(TM_LQM_MONITOR_TIMEOUT). timeElapsedMsec is the time elapsed (in
milliseconds) since the last time the link quality monitoring function was called,
outLqrs is the count of LQRs sent, outPackets is the count of packets sent, and
outOctets is the count of bytes sent

NOTE: since these are unsigned 32-bit counters, they may wrap around to 0

When reasonCode is set to TM_LQM_MONITOR_LQR:

1. countDeltasPtr points to the absolute counts of packets and bytes sent and
received (as reported by the peer in the received Link-Quality-Report
message) since the last time the link quality monitoring function was called.

2. countsPtr points to the relative counts of packets and bytes sent and
received (as reported by the peer in the received Link-Quality-Report
message). You must not change any of these counts, since they are used
internally.

3. countsPtr->lastOutLQRs may be compared with countsPtr->peerInLQRs to
determine how many outbound LQRs have been lost.

4. countsPtr->lastOutLQRs may be compared with outLQRs to determine how
many outbound LQRs are still in the pipeline.

5. countDeltasPtr->deltaPeerInPackets may be compared with
countDeltasPtr->deltaLastOutPackets to determine the number of lost

Optional Protocols

7.97

packets over the outgoing link.
6. countDeltasPtr->deltaPeerInOctets may be compared with

countDeltasPtr->deltaLastOutOctets to determine the number of lost octets
over the outgoing link.

7. countDeltasPtr->deltaSaveInPackets may be compared with
countDeltasPtr->deltaPeerOutPackets to determine the number of lost
packets over the incoming link.

8. countDeltasPtr->deltaSaveInOctets may be compared with
countDeltasPtr->deltaPeerOutOctets to determine the number of lost octets
over the incoming link.

9. countDeltasPtr->deltaPeerInDiscards and
countDeltasPtr->deltaPeerInErrors may be used to determine whether
packet loss is due to congestion in the peer rather than physical link failure.

When reasonCode is set to TM_LQM_MONITOR_TIMEOUT, countDeltasPtr
and countsPtr are NULL.

If link quality is good, your link quality monitoring function should return 0,
otherwise it should return 1, unless you want to reduce the hysteresis and speed
up the process of link failure in which case it should return a value greater than 1.

NOTE: Your link quality monitoring function is called with the device locked.
You cannot call any LQM public API functions from the monitoring function
(doing so will result in deadlock, if you have #define’d the macro
TM_LOCK_NEEDED to enable locking). For example, if your monitoring
function determines that the link is good outgoing but very bad incoming, and
you want to send LQRs at a faster rate in this case (per RFC-1989), you cannot
call tfLqmSendLinkQualityReport() or tfLqmSetLqrTimerPeriod() directly from
your monitoring function since doing so will result in deadlock. Instead, have
your monitoring function set a flag, which you can then poll in another task (or
in your main polling loop) that can then call the appropriate LQM public API
functions.

Parameters
Parameter Description
interfaceHandle The PPP interface to use this link

quality monitoring routine with.
monitorFuncPtr The function to call to monitor link

quality.
hysteresisMaxFailures Set to 0 if we aren’t using any

hysteresis, otherwise this is the
maximum number of bad link quality

Turbo Treck Real-Time TCP/IP User’s Manual

7.98

counts we are allowed to get back
from calls to the user’s link quality
monitoring function within the
specified sampling period (i.e.
hysteresisSamples) before we will
notify the user that the link is bad.

hysteresisSamples Set to 0 if we aren’t using any
hysteresis, otherwise this is the
sampling period (specified as the
number of calls to the user’s link
quality monitoring function) used
to determine if the link is bad.

Returns
Value Meaning
0 Success.
TM_EINVAL The interface handle is invalid, or

monitorFuncPtr was NULL.
TM_EOPNOTSUPP You must call tfUsePppLqm first to

initialize PPP LQM.

Optional Protocols

7.99

tfLqmSendLinkQualityReport

int tfLqmSendLinkQualityReport
(
ttUserInterface interfaceHandle
);

Function Description
The PPP LQM specification (RFC-1989) allows the Link-Quality-Report message
to be sent more frequently than the negotiated reporting period, and
tfLqmSendLinkQualityReport gives you direct control over when Link-Quality-
Report messages are sent. You may want to use tfLqmSendLinkQualityReport if
your link quality monitoring function is not being called frequently enough, and
you want to get feedback on what the current link quality is.

Parameters
Parameter Description
interfaceHandle The PPP interface to send the Link-

Quality-Report message on.

Returns
Value Meaning
0 Success.
TM_EINVAL The interface handle is invalid.
TM_ENETDOWN The PPP interface is not open/

connected.
TM_EOPNOTSUPP Could not send Link-Quality-Report

message because LQM is disabled
on the link (i.e. the peer does not
support LQM).

TM_ENOBUFS Could not allocate a buffer for the
Link-Quality-Report message.

Turbo Treck Real-Time TCP/IP User’s Manual

7.100

tfPppSendEchoRequest

int tfPppSendEchoRequest
(
ttUserInterface interfaceHandle,
ttUser8Bit echoRequestId,
const char * dataPtr,
int dataLen,
ttEchoReplyFuncPtr echoReplyFuncPtr
);

Function Description
ttPppSendEchoRequest sends a LCP Echo-Request message, and then later will
call the user-defined function (specified by echoReplyFuncPtr) to process
received LCP Echo-Reply messages. For each Echo-Request message sent, there
should be one Echo-Reply message received containing the same data that was
in the Echo-Request (possibly truncated, depending on what was negotiated for
TM_LCP_MAX_RECV_UNIT). If you do not want to process received LCP
Echo-Reply messages, set echoReplyFuncPtr to
TM_PPP_ECHO_REPLY_FUNC_NULL_PTR.

It is important to note that the user is responsible for matching Echo-Request
messages with their associated Echo-Reply messages. No attempt is made in this
function to keep track of Echo-Request messages that have been sent for later
matching them up with received Echo-Reply messages. However, the
echoRequestId parameter is provided to assist the user in performing this
matching. The correct usage of this parameter is described in RFC-1661 as
follows:

“On transmission, the Identifier field MUST be changed whenever the
content of the Data field changes, and whenever a valid reply has been
received for a previous request. For retransmissions, the Identifier
MAY remain unchanged. On reception, the Identifier field of the Echo-
Request is copied into the Identifier field of the Echo-Reply packet.”

The user is responsible for incrementing echoRequestId as appropriate to ensure
that the above RFC requirements on the use of the Identifier field are met.

Since poor link quality can result in no Echo-Reply message being received after
an Echo-Request message was sent, ttPppSendEchoRequest can be used to
implement some level of link quality monitoring. This is especially useful when
PPP LQM is not supported by the peer on the link.

The function prototype for the function called to process received LCP Echo-
Reply messages (specified by echoReplyFuncPtr) is defined as follows:

Optional Protocols

7.101

int myHandleEchoReply
(
ttUserInterface interfaceHandle,
ttUser8Bit echoRequestId,
const char* dataPtr,
int dataLen);

Parameters
Parameter Description
interfaceHandle The PPP interface to send the Echo-

Request message on.
echoRequestId A unique ID for the Echo-Request

message. This can be used to match
Echo-Request messages with their
associated Echo-Reply messages.

dataPtr Pointer to the data to send in the
Echo-Request message.
dataLen Length of the data (in
bytes) to send in the Echo-Request
message.

echoReplyFuncPtr Function pointer pointing to a user-
defined routine that handles a
received LCP Echo-Reply message.

Returns
Value Meaning
0 Success.
TM_EINVAL The interface handle is invalid.
TM_ENETDOWN The PPP interface is not open/

connected.
TM_EMSGSIZE The length of the Echo-Request

message exceeds the MRU used on
the link.

TM_ENOBUFS Could not allocate a buffer for the
Echo-Request message.

Turbo Treck Real-Time TCP/IP User’s Manual

7.102

tfLqmSetLqrTimerPeriod

int tfLqmSetLqrTimerPeriod
(
ttUserInterface interfaceHandle,
ttUser32Bit lqrTimerPeriodMsec
);

Function Description

tfLqmSetLqrTimerPeriod can be called to increase the
frequency of sending LQRs (i.e. decrease the LQR timer
period) when using a LQR timer. This function should be
called by the user to send LQRs faster when the link is good
outgoing, but very bad incoming, since in that case incom-
ing LQRs will be frequently lost. The LQR timer period
cannot be increased to be longer than the negotiated period.

Parameters
Parameter Description
interfaceHandle The PPP interface handle as

returned by tfAddInterface.
lqrTimerPeriodMsec Configures how long (in millisec-

onds) we wait before sending a
LQR. This period cannot be longer
than the negotiated period for the
LQR timer, and cannot be 0.

Returns
Value Meaning
0 Success.
TM_EINVAL The interface handle is invalid, or

lqrTimerPeriod is invalid (i.e. was 0,
or was longer than the negotiated
period).

TM_EOPNOTSUPP No LQR timer is being used locally,
or LQM is disabled on the link.

Optional Protocols

7.103

tfLqmGetLocalLqrTimerPeriod

ttUser32Bit tfLqmGetLocalLqrTimerPeriod
(
ttUserInterface interfaceHandle
);

Function Description
tfLqmGetLocalLqrTimerPeriod returns the negotiated period of our local LQR
timer (in milliseconds), or 0 if we aren’t using a LQR timer.

Parameters
Parameter Description
interfaceHandle The PPP interface handle as

returned by tfAddInterface.

Returns
Value Meaning
0 Either LQM is disabled on the link,

or we do not use a LQR timer.
!= 0 The negotiated period (in millisec-

ond) of our local LQR timer. This
will not be the same as the current
LQR timer period if you have called
tfLqmSetLqrTimerPeriod.to
change the LQR timer period.

Turbo Treck Real-Time TCP/IP User’s Manual

7.104

tfLqmGetPeerLqrTimerPeriod

ttUser32Bit tfLqmGetPeerLqrTimerPeriod
(
ttUserInterface interfaceHandle
);

Function Description
tfLqmGetPeerLqrTimerPeriod returns the negotiated period of the peer’s LQR
timer (in milliseconds), or 0 if the peer isn’t using a LQR timer.

Parameters
Parameter Description
interfaceHandle The PPP interface handle as

returned by tfAddInterface.

Returns
Value Meaning
0 Either LQM is disabled on the link,

or the peer does not use a LQR
timer.

!= 0 The negotiated period (in millisec-
onds) of the peer’s LQR timer.

Configuration Notes

A.1

Appendix A
Configuration Notes

Turbo Treck Real-Time TCP/IP User’s Manual

A.2

Configuration Notes

A.3

Configuring IP Forwarding and IP Fragmentation

IP Forwarding
By default, IP Forwarding is not enabled in the Turbo Treck stack. To enable IP
Forwarding, the user must turn on the IP forwarding option after the
tfStartTreck call:

errorCode= tfSetTreckOptions (TM_OPTION_IP_FORWARDING, 1UL);

In addition, each device that the user wants to forward packets from and to,
should be configured with the TM_DEV_IP_FORW_ENB bit set in the
tfOpenInterface flag parameter. See the tfOpenInterface description for
a list of the tfOpenInterface parameters.

Removing IP Fragmentation and IP Reassembly Code
To save code space, the user can optionally not compile the IP fragmentation
and IP reassembly code in the Turbo Treck stack.

Warning: in this case, no IP fragmentation or IP reassembly will ever take
place in the Turbo Treck stack.

 To do that, delete the following macro from trsystem.h:

#define TM_IP_FRAGMENT

IP Fragmentation
By default, if the TM_IP_FRAGMENT macro is defined in trsystem.h, then IP
Fragmentation is turned on in the Turbo Treck stack. To disable
IP Fragmentation, the user must turn off the IP Fragmentation option after the
tfStartTreck call as follows:

errorCode= tfSetTreckOptions(TM_OPTION_IP_FRAGMENT, 0UL);

Turbo Treck Real-Time TCP/IP User’s Manual

A.4

Counting Semaphores in the Turbo Treck Stack

Description
The Turbo Treck stack uses an operating system’s existing counting sema-
phores. If your operating system does not support counting semaphores, Turbo
Treck can use your OS’s event flag mechanism to create its own.
Using an OS’s existing counting semaphores is typically a more efficient method.
We have two separate counting semaphore versions. The first method will grant
counting semaphore requests by task priority, and is implemented in the
kernel\trcousem.c module. The second method (lighter version) will grant
counting semaphore requests in FIFO (First In, First Out) order, and is imple-
mented in the kernel\trctsem2.c module.

Counting Semaphore Implementation with task priority order:

The user must call the following functions.
This may require some data type modifications:

1. The user must call tfTaskInit prior to calling tfStartTreck, and prior to launching
any task that utilizes the Turbo Treck task.

2. Before launching a task that utilizes the Turbo Treck stack, the user must call
tfTaskRegister for that task, passing the taskIdPtr filled out by
tfKernelGetCurrentTaskId and set the priority of the task. The task index of
the particular task will be returned. An index bigger than or equal to
TM_NUMTSK indicates an overflow or a failure.

3. The data type for the task ID may also need modification. It is assumed that the
task ID can be stored as an integer. If this is not the case:
Replace taskIdPtr->genInParm and tskIdUnion.genIntParm
(located in tfKernelGetCurrentTaskId and tfTaskIdToIndex), with the
appropriate data type (as defined in ttUserGenericUnion).

The user must modify the following macros:

TM_NUMTSK This is the number of tasks making
calls to the Turbo Treck stack.
Default 12

tm_task_lower_same This macro is defined as
 ((taskAPri) <= (taskBPri)). If
priorities are arranged so that lower
values have higher priority, modify
the macro to
((taskAPri) >= (taskBPri).

Configuration Notes

A.5

The user must define the following functions:

tfKernelGetCurrentTaskId

int tfKernelGetCurrentTaskId
(
ttUserGenericUnionPtr taskIdPtr
)

Function Description
The user must write this function to make use of their specific operating system.
This function stores the task ID of the currently running task in taskIdPtr.

Parameters
Parameter Description
taskIdPtr Pointer to a ttUserGenericUnionPtr

into which the task ID is stored.

Returns
TM_KERN_OK

Turbo Treck Real-Time TCP/IP User’s Manual

A.6

tfKernelTaskPendEvent

void tfKernelTaskPendEvent
(
ttUserGenericUnionPtr eventPtr
)

Function Description
The user must write this function to make use of their specific operating system.
This function pends on an event, pointed to by eventPtr, which is posted from
another task. This should be similar if not identical to tfKernelPendEvent.

Parameters
Parameter Description
eventPtr Pointer to the event flag upon which

this function must pend.

Returns
Nothing

Configuration Notes

A.7

tfKernelTaskPostEvent

void tfKernelTaskPostEvent
(
ttUserGenericUnionPtr eventPtr
)

Function Description
The user must write this function to make use of their specific operating system.
This function resumes tasks that were waiting on the event pointed to by eventPtr.
This should be similar to tfKernelIsrPostEvent() with one major difference:
tfKernelIsrPostEvent() is called from within an ISR, whereas tfKernelTaskPostEvent
is called from a task. Most operating systems have different calls when posting
occurs from an ISR or from a task.

Parameters
Parameter Description
eventPtr Pointer to the event flag to which

this function must post.
Returns

Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

A.8

Counting Semaphore Implementation with FIFO order:

The user must call the following function:

The user must call tfTaskInit, prior to calling tfStartTreck, and prior to launch-
ing any task that utilizes the Turbo Treck task.

The user must define the following macro:

TM_NUMEVT This is the number of events needed
by the Turbo Treck stack. This num-
ber should match the number of tasks
making calls to the Turbo Treck stack.
Default 12

Configuration Notes

A.9

The user must define the following functions:

tfKernelTaskPendEvent

void tfKernelTaskPendEvent
(
ttUserGenericUnionPtr eventPtr
)

Function Description
The user must write this function to make use of their specific operating system.
This function pends on an event pointed to by eventPtr, which is posted from
another task. This should be similar if not identical to tfKernelPendEvent.

Parameters
Parameter Description
eventPtr Pointer to the event flag upon which

this function must pend.

Returns
Nothing

Turbo Treck Real-Time TCP/IP User’s Manual

A.10

tfKernelTaskPostEvent

void tfKernelTaskPostEvent
(
ttUserGenericUnionPtr eventPtr
)

Function Description
The user must write this function to make use of their specific operating system.
This function resumes tasks that were waiting on the event pointed to by eventPtr.
This should be similar to tfKernelIsrPostEvent with one major difference:
tfKernelIsrPostEvent() is called from within an ISR, whereas tfKernelTaskPostEvent
is called from a task. Most operating systems have different calls when posting
occurs from an ISR or from a task.

Parameters
Parameter Description
eventPtr Pointer to the event flag to which this

function must post.

Returns
Nothing

Configuration Notes

A.11

Running multiple instances of Turbo Treck
A set of new APIs described in this section have been added to allow users to
run multiple instances of the Turbo Treck TCP/IP stack. Each instance of the
Turbo Treck stack needs to be run in a given context. If the user wants to run
multiple instances of the Tubo Treck TCP/IP stack, any Turbo Treck TCP/IP
stack function should be called after a context has been set, except for the
context insensitive functions described below.

Context insensitive functions
These Turbo Treck TCP/IP stack functions can be called from any context, or
prior to setting any context

Called from any or no context Comments
tfInitTreckMultipleContext() This function initializes the Turbo

Treck global variables, prior to any
context creation.

tfTimerUpdate() Called from a Timer task.
tfTimerUpdateIsr() Called from Timer ISR.

Turbo Treck Real-Time TCP/IP User’s Manual

A.12

Initialization Sequence
First initialization (called before any other Turbo Treck TCP/IP Stack call)
tfInitTreckMultipleContext(void);

For each context:
contextHandle = tfCreateTreckContext();
if (contextHandle != (ttUserContext)0)
{

tfSetCurrentContext(contextHandle);
errorCode = tfStartTreck();

}

Summary of new context API’s

Context API Comments
int
tfInitTreckMultipleContext(void); Initializes multiple context

global variables (valid
across all contexts)

ttUserContext
tfCreateTreckContext(void); Create a Treck context, i.e.

allocate a structure contain-
ing all Treck variables for an
instance of the Treck stack,
and returns a pointer to the
newly allocated structure.

void
tfSetCurrentContext
(ttUserContext contextHandle); Set the current context

handle to the one passed in
(i.e. set the Treck global
variable tvCurrentContext
to the passed parameter).

ttUserContext
tfGetCurrentContext(void) Get the current context

handle (i.e. the context
handle stored in
tvCurrentContext).

Configuration Notes

A.13

Enabling the Multiple Instances code in Turbo Treck

To enable the multiple instances code in the Turbo Treck stack, uncomment the
following macro in your trsystem.h:
#define TM_MULTIPLE_CONTEXT

Blocking mode/non blocking mode
The following indicates the modifications needed for each type of embedded
kernel:
No Kernel
All applications have to run in non-blocking mode. All calls to the Treck stack
are made from a main loop. Example with 2 contexts, and 2 interfaces per context:
errorCode = tfInitTreckMultipleContext();
contextHandle1 = tfCreateTreckContext();
contextHandle2 = tfCreateTreckContext();

tfSetCurrentContext(contextHandle1);
errorCode = tfStartTreck();
context1InterfaceHandle1= tfAddInterafce(…);
errorCode = tfOpenInterface(context1InterfaceHandle1, ..);
context1InterfaceHandle2 = tfAddInterface(…);
errorCode = tfOpenInterface(context1InterfaceHandle2, ..);

tfSetCurrentContext(contextHandle2);
errorCode = tfStartTreck();
context2InterfaceHandle1= tfAddInterafce(…);
errorCode = tfOpenInterface(context1InterfaceHandle1, ..);
context2InterfaceHandle2 = tfAddInterface(…);
errorCode = tfOpenInterface(context2InterfaceHandle2, ..);

for (;;)
{
 tfSetCurrentContext(contextHandle1);
 tfTimerExecute()
 if (tfCheckReceiveInterface(context1InterfaceHandle1) ==
TM_ENOERROR)
 {
 tfRecvInterface(context1InterfaceHandle1);
 }
 if (tfCheckReceiveInterface(context1InterfaceHandle2) ==
TM_ENOERROR)
 {
 tfRecvInterface(context1InterfaceHandle2);
 }
 <…Non-blocking application code for context 1 ..>

 tfSetCurrentContext(contextHandle2);
 tfTimerExecute()
 if (tfCheckReceiveInterface(context2InterfaceHandle1) ==
TM_ENOERROR)
 {
 tfRecvInterface(context2InterfaceHandle1);

Turbo Treck Real-Time TCP/IP User’s Manual

A.14

 }
 if (tfCheckReceiveInterface(context2InterfaceHandle2) ==
TM_ENOERROR)
 {
 tfRecvInterface(context2InterfaceHandle2);
 }
 <…Non-blocking application code for context 2 ..>
}

Note 1: that this sample code does not check for error for ease of reading.

Note 2: For more than 2 contexts, it would make sense to save the context
variables, and interface handles in a 2 dimensional array, and loop on the array
indices.

Non preemptive kernel
In this case, the applications can run in blocking mode.

1. Each application task will have to set its Treck context prior to making the
first Treck call.

2. Inside each tfKernel..() call the user will have to save the current Treck
context, before calling the OS, and then restore the Treck context upon
return from the OS call, since the current task could be pre-empted by a
higher priority task during the OS call.

int tfKernel…(…)
{
 ttUserContext contextHandle;
 contextHandle = tfGetCurrentContext();
 <Make the OS call>
 tfSetCurrentContext(contextHandle);
}

Preemptive Kernel
In this case, the OS could switch out a task at any time.

1. If the user can modify the OS, and can save the current Treck context on a
task stack, prior to a task being switched out, and restore the task Treck
context when the task runs, then the applications can also run in blocking
mode as described in the previous section.

a. Each application task will have to set its Treck context prior to
making the first Treck call.

b. The user will need to modify the OS, and save the current Treck
context on a task stack, prior to a task being switched out, and
restore the task Treck context when the task is scheduled to run.

If the user cannot modify the OS, then all the applications will have to run in non-

Configuration Notes

A.15

blocking mode from a single Treck task. All the calls to the Treck stack will be
made from a main loop from within that single task as described in the No OS
section above.

Device Driver Modifications
Each device driver should be modified as described in the “Further Device
Driver Modifications to allow a device driver to be shared by several Ethernet
Interfaces” section of chapter 4 of this manual. The modification to the Device
driver ISR is a little bit different, and is described below.

Device driver ISR
The user should keep a global mapping between an interrupt vector, and a pair
interface handle, context, instead of just a global mapping between an interrupt
vector, and an interface handle. In the device driver ISR, the user should save the
current context, then the user should set the Turbo Treck context as found in the
global mapping described here, and call tfDeviceGetPointer in order to access
the device driver specific data. Before returning from the ISR, the user should set
the context to the saved value at the beginning of the ISR function.

Turbo Treck Real-Time TCP/IP User’s Manual

A.16

tfInitTreckMultipleContext

#include <trsocket.h>

void tfInitTreckMultipleContext
(void
);

Function Description
This function is used to initialize multiple context global variables (valid across
all contexts). This function should be called prior to any other Tubo Treck TCP/
IP stack functions when using multiple instances of the stack.

Parameters
None

Returns
None

Configuration Notes

A.17

tfCreateTreckContext

#include <trsocket.h>

ttUserContext tfCreateTreckContext
(void
);

Function Description
This function creates a Turbo Treck context for an instance of the Turbo Treck
TCP/IP stack. It will allocate a structure containing all Turbo Treck variables for a
context, and returns a pointer to the newly allocated structure.
tfCreateTreckContext should be called once for each instance of the Turbo
Treck TCP/IP stack. It should be called after tfInitTreckMultipleContext, and
prior to any other Turbo Treck functions, when using multiple instances of the
Turbo Treck stack.

Parameters
None

Returns
Value Meaning
Non-null pointer Pointer to newly created context.
(ttUserContext)0 An error occurred

Turbo Treck Real-Time TCP/IP User’s Manual

A.18

tfSetCurrentContext

#include <trsocket.h>

void tfSetCurrentContext
(
ttUserContext contextHandle
);

Function Description
This function is used to set the current Turbo Treck stack context. It is usually
called after a context switch, or after a kernel call.

Parameters
Parameter Description
contextHandle Turbo Treck stack context to be set.

Returns
None

Configuration Notes

A.19

tfGetCurrentContext

#include <trsocket.h>

ttUserContext tfGetCurrentContext
(

void
);

Function Description
tfGetCurrentContext returns the current Turbo Treck stack context, as known by
the Turbo Treck stack. It is usually called before a context switch, or kernel call.

Parameters
None

Returns
Value Meaning
Non zero pointer Current context handle
Null pointer. Invalid context handle.

Turbo Treck Real-Time TCP/IP User’s Manual

A.20

RTOS Notes

B.1

Appendix B
RTOS Notes

Turbo Treck Real-Time TCP/IP User’s Manual

B.2

RTOS Notes

B.3

RTOS Application Note for uC/OS
uC/OS is a simple preemptive kernel. It does not have any way to perform dy-
namic memory allocation. It does contain counting semaphores, message queues
and mail boxes as well a preemptive scheduling. With your CD-ROM you will
have received various ports of uC/OS for different processors. If your processor
is not included in the ports of uC/OS that Elmic Systems provides, then you might
want to visit the uC/OS web site at http://www.ucos-ii.com/

Predefined Settings in TRSYSTEM.H
There are processor specific settings for uC/OS in trsystem.h. They will setup uC/
OS the same way that it was used in the Elmic test facilities for various processors.

TM_KERNEL_UCOS_X86 is used for the Intel 80x86 family in real mode
TM_KERNEL_UCOS_PPC is used for the PowerPC (specifically the MPC860
for Motorola)
TM_KERNEL_UCOS_CPU32 is used for the 32 Bit 68K family of processors
from Motorola.

If you define one of the above in trsystem.h, the processor, inline assembly, task,
and memory allocation definitions will be made for you. You can modify the uC/
OS processor specific area of trsystem.h to suite your applications needs.

Initialization
uC/OS does not require any special initialization therefore the tfKernelIniticalize
should be a stub function
Memory Allocation and Free
Because uC/OS does not contain any method for performing dynamic memory
allocation, the Turbo Treck Simple Heap must be used.

In trsystem.h be sure to define the following

#define TM_USE_SHEAP
#define TM_SHEAP_SIZE size

where size is the size in bytes of the simple heap area. Most simple applications
will need about 32K bytes of RAM. To defining 32K you simply #define
TM_SHEAP_SIZE 32L*1024L. Note that size is defined as a long constant.

Because the simple heap is used, there is no need to create the functions
tfKernelMalloc and tfKernelFree

Turbo Treck Real-Time TCP/IP User’s Manual

B.4

Critical Section Handling
uC/OS does have critical section handling via two macros:
OS_ENTER_CRITICAL and OS_EXIT_CRITICAL
For tfKernelSetCritical you simply call OS_ENTER_CRITICAL and for
tfKernelReleaseCritical you simply call OS_EXIT_CRITICAL.
It is always best to use inline assembly for critical section handling by setting the
macros tm_kernel_set_critical and tm_kernel_release_critical for your processor
in trsystem.h. You will find preexisting critical section macros for specific
processors and compiler combinations in trmacro.h.

Error Logging and Warning Information Logging
uC/OS does not have any error reporting mechanism. Since this is the case,
tfKernelError and tfKernelWarning should be written to write out to a display,
serial port or a predefined area of memory that can be examined via a debugger.
In the case of tfKernelError, it should cause a CPU reset after displaying the
error message.

Task Suspend and Resume
uC/OS does implement counting semaphores, so all we need to do here is create
a mapping between Turbo Treck semaphores and uC/OS semaphores. uC/OS
semaphores are pointers to an OS_EVENT type and should be stored in the
genVoidParmPtr portion of the ttUserGenericUnion data type.
To create a counting semaphore, we simply call OSSemCreate(0). This creates a
counting semaphore that is initialized to zero. All counting semaphores that
Turbo Treck uses must be initialized to zero.
To pend on a counting semaphore, we simply call OSSemPend with a semaphore
that was created.
To post on a counting semaphore, we simply call OSSemPost with a semaphore
that was created.
tfKernelTaskYield does not need to do anything with uC/OS because uC/OS is
fully preemptive and every task has a unique priority. This function should just
be a stub function

RTOS Notes

B.5

ISR Interface
uC/OS does not have anyway to install Interrupt Service Routines. We have put a
routine in the uC/OS ports that we supply called OSInstallISR. This function is
NOT supplied with uC/OS. This function is very processor specific. If you are
not using a Turbo Treck port of uC/OS, but are using a Turbo Treck device driver,
then you should add this function for your processor.

Note that all ISR routines that call Turbo Treck or uC/OS must call OSIntEnter
upon entry and OSIntExit upon leaving.

Since uC/OS does not have event flags and it is okay to post on a counting semaphore
from an ISR, the functions tfKernelCreateEvent, tfKernelPendEvent, and
tfKernelPostEvent use uC/OS counting semaphores. You can use the same code
as you used in tfKernelCreateCountSem, tfKernelPendCountSem, and
tfKernelPostCountSem.

Hooking up the Timer
The best way to hook a timer to Turbo Treck from uC/OS is to create a separate
timer task. This task simply calls tfTimerUpdate, tfTimerExecute then
OSTimeDelay(1). The OSTimeDelay(1) causes us to delay for one RTOS clock
tick. This task should be the highest priority of any task calling the Turbo Treck
stack.

Task Usage
All uC/OS tasks are different priorities. With uC/OS you should have one timer
task, one receive task per interface and your application tasks. For best performance,
you should create one receive task per device that calls tfWaitReceiveInterface and
tfRecvInterface. The receive tasks should have a higher priority than the application
tasks but lower than the timer task.

Turbo Treck Real-Time TCP/IP User’s Manual

B.6

RTOS Application Note for AMX-86
AMX-86 is a Commercial Off The Shelf (COTS) real-time operating system from
Kadak Products Ltd. It contains counting semaphores and memory allocation.
AMX is broken up into two variants. These are commonly referred to as the “AJ
Kernel” and “CJ Kernel”. AMX-86 is the AJ kernel (thus all the calls to the
operating system are prefixed with “aj”.

Initialization
AMX-86 does not require any special initialization therefore the tfKernelIniticalize
should be a stub function

Memory Allocation and Free
AMX-86 includes dynamic memory allocation via the calls ajmget and ajmfre.
tfKernelMalloc should call ajmget to allocate a block of memory and tfKernelFree
should call ajmfre to free a block of memory.

Critical Section Handling
AMX-86 is used with the Intel x86 processor family. For both Microsoft and
Borland compilers, we have included inline assembly in trmacro.h to set and release
critical sections. If you are using another compiler, you can define the macros
tm_kernel_set_critical and tm_kernel_release_critical in trsystem.h to be the
appropriate inline assembly for your compiler for setting and releasing critical
sections.

Error Logging and Warning Information Logging
AMX-86 does not have any error reporting mechanism. Since this is the case,
tfKernelError and tfKernelWarning should be written to write out to a display,
serial port or a predefined area of memory that can be examined via a debugger. In
the case of tfKernelError, it should cause a CPU reset after displaying the error
message.

Task Suspend and Resume
AMX-86 does implement counting semaphores, so all we need to do here is create
a mapping between Turbo Treck semaphores and AMX-86 semaphores. AMX-86
semaphores are pointers to an AMX_ID type and should be stored in the
genVoidParmPtr portion of the ttUserGenericUnion data type.

To create a counting semaphore, we simply call ajsmcre. This creates a counting
semaphore. Be sure to initialize to zero. All counting semaphores that Turbo
Treck uses must be initialized to zero.

To pend on a counting semaphore, we simply call ajsmwat with a semaphore that
was created.

RTOS Notes

B.7

To post on a counting semaphore, we simply call ajsmsig with a semaphore that
was created.

tfKernelTaskYield does not need to do anything with AMX-86 because AMX-86
is fully preemptive and every task has a unique priority. This function should just
be a stub function.

ISR Interface
AMX-86 has a method to install ISRs. in AMX-86 these are called Interrupt
Service Procedures (ISP). Since we normally use “C” code for the ISR code, we
need to setup our tfKernelInstallIsrHandler to call ajispm to create a wrapper ISP
that will call our “C” function. Then we call ajivtw to write the address of the
wrapper that calls our “C” code to the interrupt vector table.

With AMX-86 it is okay to post on a counting semaphore from an ISR, the func-
tions tfKernelCreateEvent, tfKernelPendEvent, and tfKernelPostEvent use uC/OS
counting semaphores. You can use the same code as you used in
tfKernelCreateCountSem, tfKernelPendCountSem, and tfKernelPostCountSem.

Hooking up the Timer
The best way to hook a timer to Turbo Treck from AMX-86 is to create a separate
timer task. This task simply calls tfTimerUpdate, tfTimerExecute then ajwatm.
The ajwatm takes as it parameter the number of milliseconds to wait. This task
should be the highest priority of any task calling the Turbo Treck stack.

Task Usage
All AMX-86 tasks are different priorities. With AMX-86 you should have one
timer task, one receive task per interface and your application tasks. For best
performance, you should create one receive task per device that calls
tfWaitReceiveInterface and tfRecvInterface. The receive tasks should have a higher
priority than the application tasks but lower than the timer task.

AMX-86 System Configuration Module
With the system configuration tool for AMX-86 you will need to define the maxi-
mum number of semaphores and tasks. The maximum number of tasks is calcu-
lated from the following formula

MaxTasks=ReceiveTasks+SendCompleteTasks+XmitTasks+TimerTask+ApplicationTasks

The absolute maximum number of semaphores needed by the is calculated via
the following formula:
MaxSemaphores=(NumberInterfaces*NumberTasksPerInterface)+MaxTasks.

NumberTasksPerInterface is the number of tasks that are dedicated to interface

Turbo Treck Real-Time TCP/IP User’s Manual

B.8

processing. The maximum this can be is 3
(RecvTask+SendCompleteTask+XmitTask). This is controlled via #defines in
trsystem.h.

Maximum Stack Size should not exceed 2048. Selecting too small of a stack
can lead to unpredictable behavior.

Turbo Treck does not require any AMX timers since we are using a separate
Timer task.

Debugging a Device Driver

Appendix C
Debugging

Turbo Treck Real-Time TCP/IP User’s Manual

C.2

Debugging a Device Driver

C.3

Debugging a Device Driver

How to debug a device driver

1. Use a network analyzer.
Network analyzers can be obtained from KLOS (www.klos.com), and
Shomiti (www.shomiti.com). Network analyzers are invaluable when
trying to debug a protocol stack. They allow you to see all of the traffic on
the network, and thus inspect what was going on in the stack when
problems were encountered. For technical support to be effective in
helping you with any problems you may encounter, some form of packet
capturing device is of the utmost importance.

2. Disable all Compiler Optimizations
While debugging your device driver, you should disable all compiler
optimizations. Certain compiler optimizations may cause problems with
your network device driver and should not be enabled until the driver is
completely debugged.

3. Use InetD95 for windows 95/98 included on distribution CD.
This tool emulates some of the standard services available on Unix
machines. Most interesting to us are the echo port and the discard port
(ports 7 and 9, respectively). They allow you to send data from another
source, which they will either echo back to you, or discard silently. One
of the easiest initial tests to do with the stack is to have it send data to
another host, which will then silently discard it. If a Unix machine is
unavailable to you, this program makes it possible to run a similar test
using a Windows platform.

4. Send pre-initialized data.
Frequently, errors with the driver can cause memory to be corrupted. By
sending pre-initialized data at the application level, it is easy to verify
that the correct data are being sent.

5. Use Turbo Treck test suite to test the locks and the driver.
The Turbo Treck stack comes with a test suite that allows you to verify if
the locking mechanism is working correctly. Once that has been verified,
the suite is also capable of testing various other aspects of TCP and UDP
communications. Please see the Turbo Treck Test Suite section in this
manual.

6. Make sure the user interface handle is valid when calling
tfRecvInterface(). It has to be the interface handle as returned by
tfAddInterface().

Turbo Treck Real-Time TCP/IP User’s Manual

C.4

This is frequently interpreted as an error at the driver level, but is actually
a bug in application code. If the interface handle passed to tfRecvInterface
is not valid, it could cause the call to fail, memory corruption, or an
application crash.

7. Temporarily disable TM_DEV_SCATTER_SEND_ENB in your call
to tfOpenInterface().
The TM_DEV_SCATTER_SEND_ENB flag informs the stack that
scatter-send is available in the driver. This means that the stack can deliver
a packet to the driver in parts – that is, a packet may be comprised of more
than one buffer. This is desirable, especially for TCP, because it removes
the necessity of a copy and speeds up performance. However, supporting
scatter-send in the driver can be a little more complicated. If the flag is
being passed in to tfOpenInterface() and you are seeing odd behavior, try
disabling it. If you had a memory corruption problem before that now
goes away, it is a sign that tfSendComplete() was being called too
frequently. It should be called once per packet, as opposed to once per
buffer.

8. Look for memory leaks. (Break point on memory allocation function
after several minutes).
The Turbo Treck stack uses an optimized memory allocation scheme in
which it maintains its own memory pool. After the system becomes
balanced, which is usually within 5 minutes of startup, the stack should
not be requesting any more memory from the system. If this is occurring,
it is a possible sign that memory is being lost within the driver. Putting
breakpoints on the system memory allocation functions (tfKernelMalloc
if you are using your operating system’s memory allocation procedures,
tfSheapMalloc if you are using Turbo Treck’s simple heap) after the stack
has been running for about five minutes will allow you to identify any
suspicious memory allocations.

9. Look at send and receive buffer rings.
Most Ethernet drivers will require the user to set up send and/or receive
buffer rings. Even if not required, frequently the use of these buffer rings
will speed up performance, and is thus very desirable. However, send
and receive rings are generally the most complex part of a driver’s logic.
Check your ring logic very carefully – by hand, if necessary. We also
provide an API for use at the driver level that should alleviate this problem.
Please see the ‘Programmers Reference Section of this manual.

Debugging a Device Driver

C.5

10. Use counters to compare the number of times the device driver send
function is called with the TM_USER_BUFFER_LAST flag set with
the number of tfSendCompleteInterface() is called.
tfSendCompleteInterface() should be called once, and only once, for each
time that the driver’s send function is called with the
TM_USER_BUFFER_LAST flag set. Calling tfSendCompleteInterface()
either too frequently or too infrequently can lead to memory loss and/or
corruption.

11. Use counters to compare the number of receive ISR events with the
number of calls made to driver receive function.
For each packet the chip receives, the stack should be notified. Similarly,
for each packet the stack is notified of, it should call the driver receive
function once. This test will verify that this is happening.

12. No printf or anything that takes too much CPU time inside the ISR.
Putting any extra code inside an ISR can be dangerous, but printf
statements and their relatives can be doubly so. On various platforms,
printf involves a call to the operating system that may result in interrupts
being re-enabled before the ISR has completed. Also, extra code inside
the ISR can change the system in other ways. For example, printf calls
are frequently mapped to a serial port. Serial ports are generally slow
enough that making use of one inside an ISR can change a system’s timing
significantly, thus hiding potential timing bugs, or even cause interrupts
to be missed.

13. Make sure that any data that are either modified or checked during
an ISR are protected by a critical section when accessed or changed
anywhere else in the code.
Frequently, hard-to-track bugs will occur when variables that are used
inside an ISR are not protected elsewhere in the code. For example, one
section of the driver increments a variable by one and then does an ‘if’
statement based on that variable on the next line of code. However, the
driver’s ISR function also modifies that variable. If an interrupt occurs
between the variable being incremented and the variable being checked,
it could lead to unexpected results. This is also true in the reverse. If you
are using a long integer on a 16-bit system, it takes more than one processor
instruction to modify that variable. If this variable is checked in the ISR,
it must be protected elsewhere in the code to ensure that an interrupt does
not occur while the variable is only partially modified.

14. Temporarily put a critical section around the send and receive
functions in the driver to isolate the problem area.
If there is a bug such as mentioned immediately above, temporarily putting
critical sections around your entire driver send or receive function may

Turbo Treck Real-Time TCP/IP User’s Manual

C.6

indicate which function the error is in. By moving the critical sections
around, you may be able to narrow down the area in which the error is
occurring. If you decide to do this, be wary of printf() statements or the
like which may unexpectedly re-enable interrupts.

15. Double-check every item in the list of common symptoms. Don’t
assume anything; don’t trust your memory.
Everybody has made this mistake. Be very careful to check everything
in the list, and don’t make any assumptions about how you have coded
something. Check it!

Debugging a Device Driver

C.7

Common Symptoms and Their Causes

Running Out of Memory
• Not calling tfSendCompleteInterface every time

TM_USER_BUFFER_LAST is passed into the driver send routine.

• A problem with the receive ring logic. For example, a bug could cause a
receive ring to be refilled even though the ring is already has empty buffers.
In this case, the empty buffers would all be lost.

• Notifying the stack of an incorrect number of received packets. Though
this problem will most frequently just cause the receive ring to fill up and
never be emptied (making the chip unable to receive any further data),
there are cases where it could lead to loss of memory.

• A memory leak could also be caused by an error in the application. For
example, failing to free zero copy receive buffers when the application
calls tfZeroCopyRecv() or tfZeroCopyRecvFrom() will cause a loss of
memory. Another common problem occurs when the user calls
tfZeroCopySend() or tfZeroCopySendTo() in non-blocking mode. If the
error code is TM_EWOULDBLOCK is returned, the user still owns the
buffer. The buffer is freed in every other case.

• Not having enough memory available for your system. Frequently, what
appears to be a memory leak is simply a case of not giving the Turbo
Treck stack enough memory to work with. Try allocating more memory
for the stack if available, and see if allocations top out at a certain level.

Turbo Treck Real-Time TCP/IP User’s Manual

C.8

Corrupted Memory
• Calling tfSendCompleteInterface() too soon or too frequently. This could

cause packets that have not been sent to be freed, or packets to be freed
more than once.

• Endian mismatch between CPU and Ethernet chip. For example, an
Ethernet chip with DMA capabilities write data to a buffer in main memory,
the address of which is written into one of its registers by the driver. The
driver writes the address in little-endian mode, but the chip interprets it as
big-endian and writes the data to the wrong part of memory.

• Invalid physical memory address passed to the Ethernet chip. For example,
passing a logical address (data segment, offset) to a chip that is expecting
a physical address could cause this problem.

• Invalid alignment when receiving data. Many Ethernet chips (if they
support DMA) require that buffers they write into begin on a certain byte-
boundary. These can be as small as two bytes (that is, buffers must begin
on an even-numbered memory address), but are frequently as large as 16
bytes.

• Not checking for failed memory allocation (null pointer returned when
allocating memory).

• The ISR is changing or checking data that is changed or checked anywhere
else in the driver. If the data are not protected in the rest of the driver with
critical sections, an interrupt could occur at an inopportune time and lead
to memory corruption or a host of other problems.

• Locks are not working properly (that is, counting semaphores are not
working properly). This can be tested quickly with the tfTestTreck() API
call .

• Make sure that counting semaphores you create have an initial value of
zero.

Receiving Corrupted Data
• Many chips do not tell you their pre-allocated receive buffer alignment

requirement. A safe value to use, if you do not know, is 16 bytes.

• Passing a receive buffer up the stack that has not been yet filled by the
chip. This is most frequently caused by an error in the receive-ring logic.

Kernel Error: Send Too Much Scattered Data
• This is a sign of corrupted memory. See the “Corrupted Memory” section

above.

Debugging a Device Driver

C.9

Kernel Error: Attempt to free more than alloc a buffer
• This can be a sign of corrupted memory. See the “Corrupted Memory”

section above.

• This can also be an error in the application. For example, attempting to
free a zero copy send buffer that has already been given to the stack will
cause this error.

Ping and UDP work but TCP does not
• tfOpenInterface has enabled scattered send, but the driver either does not

support scatter send, or device driver scatter send does not work properly.
Try disabling scatter-send in tfOpenInterface and testing again.

• If you have added an assembly checksum routine (see the Tech Note
included on the distribution CD), it might not be working correctly.
Temporarily use the standard ‘C’ version of the checksum routine to test
this. This will only be the case if checksums have been disabled for UDP.

Ping works but UDP and TCP do not
• This is frequently actually a routing problem. If there was no call made in

the application to add a default gateway or a static route for the final
destination of the packet, this problem will occur.

• If you have added an assembly checksum routine (see the Tech Note
included on the distribution CD), it might not be working correctly.
Temporarily use the standard ‘C’ version of the checksum routine to test
this.

Driver Will Not Send and/or Receive Data
• The ISR is not installed correctly. The interrupts are occurring correctly,

but the ISR is not being executed.

• Interrupts are not firing.

• The interrupt fires once, but then is not dismissed correctly, and will not
fire again.

• Edge vs level triggered interrupts. If an interrupt is set to be edge triggered,
it is possible that an incoming interrupt will be missed. Some chips will
not interrupt again until the previous interrupt has been cleared. This will
cause the chip to not send or receive data, or to suddenly stop sending
and receiving data.

• Some chips require you to copy while inside the ISR before they will
dismiss the ISR. For example the 3C509 and Crystal (CS8900) Ethernet
chips have this requirement. If this is the case, you should make use of
the Turbo Treck Driver Pool API.

Turbo Treck Real-Time TCP/IP User’s Manual

C.10

• Ensure that you are communicating correctly with the chip. If it is not
being set up correctly, it will not function.

• Make sure that the chip is set up correctly. Even if you are communicating
with it, verify that the registers are being initialized correctly.

• tfRecvInterface() is not being called in the application.

Driver stops sending and/or receiving data
• Make sure that interrupts are being triggered correctly. That is, it is possible

for an edge-triggered interrupt to be missed. Some chips will not continue
operation until you have cleared the interrupt, causing the chip to cease
working.

• The receive ring is not being refilled correctly. This can cause a chip to
stop receiving data, as it believes there are no available buffers for it to
write into.

• Receive-ring / send-ring miscoding can cause deadlock with the Ethernet
chip. There are various cases where bugs in the ring logic within a driver
can cause the chip to stop responding. Check your ring logic very carefully.

• An interrupt was not cleared correctly. Many chips will not interrupt again
until you have cleared the last interrupt.

• If your OS has a separate post for tasks and ISRs (e.g. RTXC), make sure
that these are used correctly. tfKernelIsrPostEvent should use the ISR
specific post function.

• If your OS cannot post from an ISR at all, you should call
tfNotifyInterfaceIsr from the OS’s post-ISR function (eg, eCOS). That
is, OS’s that do not allow you to post to a semaphore or event flag inside
an ISR will allow you to register a function that will be run after the ISR.
Put your tfNotifyInterfaceIsr inside this function.

Other problems
• System locks up. This is usually caused by memory corruption (espe-

cially writing to memory address 0). See the “Corrupted Memory”
section above. Getting stuck inside an ISR will also cause this behav-
ior.

• Kernel Error: tfTcpSendPacket: send queue corrupted. This is symp-
tomatic of counting semaphores not working correctly or not initializ-
ing the counting semaphore value to zero.

	Turbo Treck TCP/IP User's Manual v3.0a
	Contents
	01 Introduction to TCP/IP
	Short Background of the Internet
	What is a Protocol?
	The TCP/IP Protocol Stack
	The Ethernet Protocol
	Twisted Pair Ethernet
	Properties of an Ethernet
	Collision Detect and Recovery
	Ethernet Capacity
	Ethernet Hardware Addressing
	Special Bits of an Ethernet Address
	Obtaining an Ethernet Address Block
	Ethernet Frame Format

	The Address Resolution Protocol (ARP)
	ARP Implementation
	ARP Encapsulation and Identification
	ARP Protocol Format

	Big Endian/Little Endian
	The Point to Point Protocol (PPP)

	Link Control Protocol
	PPP Encapsulation
	The Protocol Field
	The Information Field
	The Padding Field

	PPP Link Operation
	Understanding IP Addresses
	IP Address Format
	Network and Broadcast Addresses
	Limited Broadcast
	Drawbacks in Internet Addressing
	Dotted Decimal Notation
	Loopback Address
	Special Address Conventions
	Netmasks
	Reserved Addresses
	Sub-Netting & Super-Netting

	The Internet Protocol (IP)
	Connectionless Packet Delivery Service
	Purpose of the Internet Protocol
	The Internet Datagram
	Datagram Format
	Datagram Type of Service and Datagram Precedence
	Datagram Encapsulation

	Understanding Checksums
	Introduction
	Explanation of Checksums

	The Internet Control Message Protocol (ICMP)
	Error Reporting vs. Error Correction
	ICMP Message Delivery
	ICMP Message Format
	Testing Destination Reachability and Status (Ping)
	Summary

	The User Datagram Protocol (UDP)
	UDP Message Format
	UDP Pseudo-Header
	UDP Encapsulation

	The Transport Control Protocol (TCP)
	Reliable Stream Delivery
	Reliability
	Sliding Windows
	Transmission Control Protocol
	TCP Header
	TCP/IP and Client/Server Relationships

	Summary

	02 Introduction to BSD Sockets
	Intro to BSD Sockets
	Overview of How Sockets Works
	Byte-Ordering Functions
	Data Structures
	Common Sockets Calls
	socket
	bind
	listen
	accept
	connect
	send
	sendto
	recv
	recvfrom
	close

	Example Code
	UDP Client
	UDP Server
	TCP Client
	TCP Server

	03 Turbo Treck Systems
	Turbo Treck Real-Time TCP/IP Systems
	Locking System
	Buffer System
	Timer System

	04 Integrating Turbo Treck Real-Time Protocols Into Your Environment
	Integrating Turbo Treck Real-Time Protocols Into Your Environment
	Step 1- Determining How to Use the Protocols in Your System
	I do not have an RTOS/Kernel to Interface to
	I have a RTOS/Kernel to Interface to, but it does not allow any blocking/pending calls
	I have a RTOS/Kernel to Interface to

	Step 2 - Setting TRSYSTEM.H for Various Compile Time Switches
	Performance Macros
	TM_BYPASS_ETHER_LL
	TM_IP_FRAGMENT
	TM_IP_FRAGMENT_NO_COPY
	TM_DISABLE_PMTU_DISC
	TM_DISABLE_TCP_SACK
	TM_USE_TCP_PACKET
	TM_DISABLE_DYNAMIC_MEMORY
	TM_ARP_UPDATE_ON_RECV
	TM_OPTIMIZE_SPEED
	TM_OPTIMIZE_SIZE
	TM_ERROR_CHECKING
	TM_THREAD_STOP
	TM_PROTO_EXTERN
	TM_LOOP_TO_DRIVER
	TM_USE_DRV_ONE_SCAT_SEND
	TM_USE_DRV_SCAT_RECV
	TM_INDRV_INLINE_SEND_RECV
	TM_DISABLE_TCP_ACK_PUSH
	TM_SINGLE_INTERFACE_HOME
	TM_MULTIPLE_CONTEXT
	TM_DISABLE_ANSI_LINE_FILE
	TM_DISABLE_TCP_RFC2414
	TM_PC_LINT
	TM_TCP_ANVL
	TM_USE_AUTO_IP
	TM_USE_RAW_SOCKET
	TM_USE_REUSEADDR_LIST
	TM_PPP_LQM

	Models for Running Turbo Treck
	TM_TRECK_NO_KERNEL
	TM_TRECK_NONPREEMPTIVE_KERNEL
	TM_TRECK_TASK
	TM_TRECK_PREEMPTIVE_KERNEL
	TM_TASK_RECV
	TM_TASK_XMIT
	TM_TASK_SEND

	Timer Updates
	TM_TICK_LENGTH

	Word Order
	TM_LITTLE_ENDIAN
	TM_BIG_ENDIAN

	Memory Allocation
	TM_USE_SHEAP
	TM_SHEAP_SIZE
	TM_DYNAMIC_CREATE_SHEAP

	Intel Far Data and Code
	TM_FAR
	TM_CODE_FAR

	Data Alignment
	TM_ETHER_HW_ALIGN

	Predefined Processor Macros
	TM_INTEL_X86
	TM_MOTOROLA_CPU32
	TM_MOTOROLA_68K
	TM_MOTOROLA_PPC
	TM_TMS320_C3
	TM_TMS320_C6

	Compiler Specification
	TM_COMPILER_GHS_ARM
	TM-COMPILER_GHS_PPC
	TM_COMPILER_SDS
	TM_COMPILER_DDI_PPC
	TM_COMPILER_MRI_68K

	RTOS/Kernel Environments
	TM_KERNEL_ELX_86
	TM_KERNEL_UCOS_X86
	TM_KERNEL_UCOS_PPC
	TM_KERNEL_UCOS_CPU32
	TM_KERNEL_AMX_CPU32
	TM_KERNEL_AMX_X86
	TM_KERNEL_DOS_X86

	Step 3 - Creating the Build Command (.BAT)
	Tier 1: Setting up the compiler and library utility primitives
	Tier 2: Compile/Library all the Turbo Treck code
	Tier 3: Setting up the Automated Build System

	Step 4 - Creating an RTOS/Kernel Interface
	Initialization
	Memory Allocation and Free
	Turbo Treck Simple Heap
	TM_USE_SHEAP
	TM_SHEAP_SIZE
	TM_DYNAMIC_CREATE_SHEAP
	tfKernelSheapCreate

	Critical Section Handling
	Error Logging
	Warning Information Logging
	Task Suspend and Resume
	ISR Interface
	Device Interface Routines
	tfKernelCreateEvent
	tfKernelPendEvent
	tfKernelIsrPostEvent
	tfKernelTaskPostEvent
	tfKernelTaskYield

	Step 5 - Hooking in the Timer
	Method 1: A Timer Task to Update and Execute Timers
	Method 2: A Timer ISR to Update Timers and Execute from Either a Main Line Loop or a Task.

	Step 6- Key Things to Start Using Turbo Treck
	Step 7 - Testing the New Library with a Loopback Test
	Step 8 - Using Ethernet or PPP
	Step 9 - Adding a New Device Driver
	Device Driver Functions that You May Need to Provide
	1. deviceOpen
	2. deviceClose
	3. driverIoctl
	4. driverGetPhysicalAddress
	5. driverSend
	6. driverReceive
	7. driverFreeReceiveBuffer
	8. driverIsrHandler

	Further Device Driver Modifications to allow a device driver to be shared by several Ethernet Interfaces
	Summary of Device Driver API's that are provided to allow a device driver to be shared by several Ethernet interfaces
	Device driver open function
	Device driver close function
	Any device driver function
	Device driver ISR Handler

	Adding and Configuring your New Device Driver
	Single Send Call Send per Frame, Out of Order Send
	Description
	Single call to the driver send per scattered frame
	Out of Order Frame Transmission

	TM_USE_DRV_ONE_SCAT_SEND
	Modified driverSend
	tfUseInterfaceOneScatSend
	Example
	Modified driverSend function to support per-frame single call scattered send:
	User calls

	tfSendCompletePacketInterface
	Limitations

	Device Driver Scattered recv ("Gather Read")
	Description
	TM_USE_DRV_SCAT_RECV
	Modified driver recv routine
	tfUseInterfaceScatRecv
	tfRecvScatInterface
	Scattered recv contiguous length threshold used in tfRecvScatInterface
	Description
	Compile time value: TM_DEV_DEF_RECV_CONT_HDR_LENGTH
	Run time modification using tfInterfaceSetOptions

	Dealing with non contiguous network protocol headers in scattered recv buffers, TM_RECV_SCAT_MIN_INCR_BUF
	Example

	No copy loop back driver

	Step 10 - Testing Your New Device Driver

	05 Programmer's Reference
	Function List
	BSD 4.4 Socket API
	accept
	bind
	connect
	getpeername
	getsockname
	getsockopt
	htonl
	htons
	inet_addr
	inet_aton
	inet_ntoa
	listen
	ntohl
	ntohs
	readv
	recv
	recvfrom
	rresvport
	select
	send
	sendto
	setsockopt
	shutdown
	socket
	tfClose
	tfIoctl
	tfRead
	tfWrite
	writev

	Socket Extension Calls
	tfBindNoCheck
	tfBlockingState
	tfFlushRecvQ
	tfFreeDynamicMemory
	tfFreeZeroCopyBuffer
	tfGetOobDataOffset
	tfGetSendCompltBytes
	tfGetSocketError
	tfGetWaitingBytes
	tfGetZeroCopyBuffer
	tfInetToAscii
	tfIpScatteredSend
	tfRawSocket
	tfRecvFromTo
	tfRegisterIpForwCB
	tfResetConnection
	tfSendToFrom
	tfSendToInterface
	tfSocketArrayWalk
	tfSocketScatteredSendTo
	tfZeroCopyRecv
	MSG_SCATTERED
	Example

	tfZeroCopyRecvFrom
	MSG_SCATTERED
	Example

	tfZeroCopySend
	tfZeroCopySendTo

	Call Back Function Registration
	tfRegisterSocketCB
	tfRegisterSocketCBParam

	Turbo Treck Initialization Functions
	tfInitTreckOptions
	tfSetTreckOptions
	tfStartTreck

	Device/Interface API
	tfAddInterface
	tfAddInterfaceMhomeAddress
	tfCheckReceiveInterface
	tfCheckSentInterface
	tfCheckXmitInterface
	tfCloseInterface
	tfConfigInterface
	tfDeviceClearPointer
	tfDeviceGetPointer
	tfDeviceStorePointer
	tfFinishOpenInterface
	tfFreeDriverBuffer
	tfGetDriverBuffer
	tfGetBroadcastAddress
	tfGetIfMtu
	tfGetIpAddress
	tfGetNetMask
	tfInterfaceGetVirtualChannel
	tfInterfaceSetOptions
	tfInterfaceSetVirtualChannel
	tfInterfaceSpinLock
	tfIoctlInterface
	tfNotifyInterfaceIsr
	tfNotifyInterfaceTask
	tfNotifyReceiveInterfaceIsr
	tfNotifySentInterfaceIsr
	tfOpenInterface
	tfPoolCreate
	tfPoolDelete
	tfPoolIsrGetBuffer
	tfPoolReceive
	tfRecvInterface
	tfRecvScatInterface
	tfSendCompleteInterface
	tfSendCompletePacketInterface
	tfSetIfMtu
	tfUnConfigInterface
	tfUseInterfaceOneScatSend
	tfUseInterfaceScatRecv
	tfUseInterfaceXmitQueue
	tfUseIntfDriver
	tfUseScatIntfDriver
	tfWaitReceiveInterface
	tfWaitSentInterface
	tfWaitXmitInterface
	tfXmitInterface

	Ethernet Link Layer API
	tfGetEthernetBuffer
	tfUseEthernet

	Null Link Layer API
	tfUseNullLinkLayer

	SLIP Link Layer API
	tfGetSlipPeerIpAddress
	tfSetSlipPeerIpAddress
	tfSlipSetOptions
	tfUseSlip

	ARP/Routing Table API
	tfAddArpEntry
	tfAddDefaultGateway
	tfAddMcastRoute
	tfAddProxyArpEntry
	tfAddStaticRoute
	tfDelArpEntryByIpAddr
	tfDelArpEntryByPhysAddr
	tfDelDefaultGateway
	tfDelProxyArpEntry
	tfDelStaticRoute
	tfDisablePathMtuDisc
	tfGetArpEntryByIpAddr
	tfGetArpEntryByPhysAddr
	tfGetDefaultGateway
	tfRtDestExists
	tfRegisterIpForwCB
	tfUseRip

	Timer Interface API
	tfTimerExecute
	tfTimerUpdate
	tfTimerUpdateIsr

	Kernel/RTOS Interface
	tfKernelCreateCountSem
	tfKernelCreateEvent
	tfKernelDeleteCountSem
	tfKernelError
	tfKernelFree
	tfKernelInitialize
	tfKernelInstalIsrHandler
	tfKernelIsrPostEvent
	tfKernelMalloc
	tfKernelPendCountSem
	tfKernelPendEvent
	tfKernelPostCountSem
	tfKernelReleaseCritical
	tfKernelSetCritical
	tfKernelSheapCreate
	tfKernelTaskPostEvent
	tfKernelTaskYield
	tfKernelWarning

	Compiler Library Replacement Functions
	tfMemCpy
	tfMemSet
	tfQSort
	tfSPrintF
	tfSScanF
	tfStrCat
	tfStrChr
	tfStrCmp
	tfStrCpy
	tfStrCSpn
	tfStrError
	tfStrLen
	tfStrNCmp
	tfStrRChr
	tfStrStr
	tfStrToL
	tfStrToUl
	tfVSPrintF
	tfVSScanF

	06 Application Reference
	Function List
	PING Application Program Interface
	Description
	tfPingClose
	tfPingGetStatistics
	tfPingOpenStart

	DNS Resolver
	Description
	Initialization functions
	Non-Blocking Mode
	Mail Exchanger (MX) Records
	tfDnsInit
	tfDnsGetHostAddr
	tfDnsGetHostByName
	tfDnsGetMailHost
	tfDnsGetNextMailHost
	tfDnsSetOption
	tfDnsSetServer

	FTPD Application Program Interface
	Description
	User Interface
	File System Interface from the FTP server
	tfFtpdUserExecute
	tfFtpdUserStart
	tfFtpdUserStop

	FTP Client Application Program Interface
	Description
	User Interface
	File System Interface
	Return Codes
	tfFtpAbor
	tfFtpAppe
	tfFtpCdup
	tfFtpClose
	tfFtpConnect
	tfFtpCwd
	tfFtpDele
	tfFtpDirList
	tfFtpFreeSession
	tfFtpGetReplyText
	tfFtpHelp
	tfFtpLogin
	tfFtpNewSession
	tfFtpNoop
	tfFtpPort
	tfFtpPwd
	tfFtpQuit
	tfFtpRein
	tfFtpRename
	tfFtpRetr
	tfFtpRmd
	tfFtpStor
	tfFtpSyst
	tfFtpTurnPasv
	tfFtpType
	tfFtpUserExecute
	FTP Passive Mode
	Description
	Example

	TFTP Client Application Program Interface
	Description
	User Interface
	tfTftpGet
	tfTftpInit
	tfTftpPut
	tfTftpSetTimeout
	tfTftpUserExecute

	TFTPD Application Program Interface
	Description
	User Interface
	File System Interface
	tfTftpdInit
	tfTftpdUserExecute
	tfTftpdUserStart
	tfTftpdUserStop

	File system interface
	Entry points from the FTP server to the file system:
	Entry points from the FTP client to the file system:
	Entry points from the TFTP server to the file system:
	tfFSChangeDir
	tfFSChangeParentDir
	tfFSCloseDir
	tfFSCloseFile
	tfFSDeleteFile
	tfFSGetUniqueFileName
	tfFSGetWorkingDir
	tfFSMakeDir
	tfFSOpenDir
	tfFSOpenFile
	tfFSReadFile
	tfFSReadFileRecord
	tfFSRemoveDir
	tfFSRenameFile
	tfFSSystem
	tfFSUserAllowed
	tfFSUserLogin
	tfFSUserLogout
	tfFSWriteFile
	tfFSWriteFileRecord

	Telnet Daemon
	Description
	User to Telnet server interface
	Telnet server to user interface
	tfTeldClosed
	tfTeldIncoming
	tfTeldOpened
	tfTeldSendQueueBytes
	tfTeldSendQueueSize
	tfTeldUserClose
	tfTeldUserExecute
	tfTeldUserSend
	tfTeldUserStart
	tfTeldUserStop

	Turbo Treck Test Suite
	Description
	Blocking Mode
	Data validation
	Random testing mode
	Locking test
	tfTestTreck

	07 Optional Protocols
	Function List
	AUTO IP Configuration
	Description
	Enabling AUTO IP
	Example
	tfAutoIPPickIpAddress
	tfCancelCollisionDetection
	tfConfigAutoIp
	tfUseCollisionDetection
	userCbFunc call back function
	tfUserStartArpSend
	Interface configuration

	BOOTP Automatic Configuration API
	Description
	tfConfGetBootEntry
	tfUseBootp

	BOOTP relay agent
	tfStartBootRelayAgent
	tfStopBootRelayAgent

	DHCP Automatic Configuration API
	Description
	tfConfGetBootEntry
	tfUseDhcp

	DHCP User Controlled Configuration API
	Description
	tfDhcpUserGetBootEntry
	tfDhcpUserRelease
	tfDhcpUserStart

	Dialer
	Description
	tfDialerAddExpectSend
	tfDialerAddSendExpect
	tfUseDialer

	IGMP API
	Introduction
	Description
	Enabling the IGMP Code
	Sending Multicast Packets
	Send API
	IP Outgoing Interface for Multicast Packets
	IP TTL for Multicast Packets
	Mapping Multicast Addresses to Layer 2 Hardware Addresses

	IGMP Protocol
	Receiving UDP Multicast Packets
	Joining a Host Group
	Leaving a Host Group
	Turbo Treck Stack Initialization of the IGMP Protocol
	Limitations
	drvIoctlFunc
	tfSetMcastInterface

	NAT
	One IP address
	Multiple IP addresses
	Mixing
	Ping
	TraceRoute
	FTP Servers
	Private IP Addressing
	Triggers
	Public vs Private
	Reference Implementation
	tfNatConfig
	tfNatUnConfig
	tfNatConfigNapt
	tfNatConfigInnerTcpServer
	tfNatConfigInnerUdpServer
	tfNatConfigInnerFtpServer
	tfNatConfigStatic
	tfNatConfigDynamic
	tfNatConfigMaxEntries
	tfNatDump

	PPP Interface
	Introduction to PPP
	PPP Negotiation
	PPP and Authentication
	Password Authentication Protocol (PAP)
	Challenge-Handshake Authentication Protocol (CHAP)
	Microsoft-Challenge-Handshake Authentication Protocol (MS-CHAP)

	Internet Protocol Control Protocol (IPCP)
	tfChapRegisterAuthenticate
	tfGetPppDnsIpAddress
	tfGetPppPeerIpAddress
	tfPapRegisterAuthenticate
	tfPppSetOption
	tfSetPppPeerIpAddress
	tfUseAsyncPpp
	tfUseAsyncServerPpp
	Link Quality Monitoring (LQM)
	Description
	Code Example
	Limitations
	Public API
	tfUsePppLqm
	tfFreePppLqm
	tfLqmRegisterMonitor
	tfLqmSendLinkQualityReport
	tfPppSendEchoRequest
	tfLqmSetLqrTimerPeriod
	tfLqmGetLocalLqrTimerPeriod
	tfLqmGetPeerLqrTimerPeriod

	08 Appendix A: Configuration Notes
	Configuring IP Forwarding and IP Fragmentation
	Counting Semaphores in the Turbo Treck Stack
	Description
	Counting Semaphore Implementation with task priority order:
	tfKernelGetCurrentTaskId
	tfKernelTaskPendEvent
	tfKernelTaskPostEvent

	Counting Semaphore Implementation with FIFO order:
	tfKernelTaskPendEvent
	tfKernelTaskPostEvent

	Running multiple instances of Turbo Treck
	Context insensitive functions
	Initialization Sequence
	Summary of new context API's
	Enabling the Multiple Instances code in Turbo Treck
	Blocking mode/non blocking mode
	No Kernel
	Non preemptive kernel
	Preemptive Kernel

	Device Driver Modifications
	Device driver ISR
	tfInitTreckMultipleContext
	tfCreateTreckContext
	tfSetCurrentContext
	tfGetCurrentContext

	09 Appendix B: RTOS Notes
	RTOS Application Note for uC/OS
	Predefined Settings in TRSYSTEM.H
	Initialization
	Critical Section Handling
	Error Logging and Warning Information Logging
	Task Suspend and Resume
	ISR Interface
	Hooking up the Timer
	Task Usage

	RTOS Application Note for AMX-86
	Initialization
	Memory Allocation and Free
	Critical Section Handling
	Error Logging and Warning Information Logging
	Task Suspend and Resume
	ISR Interface
	Hooking up the Timer
	Task Usage
	AMX-86 System Configuration Module

	10 Appendix C: Debugging
	Debugging a Device Driver
	How to debug a device driver

	Common Symptoms and Their Causes
	Running Out of Memory
	Corrupted Memory
	Receiving Corrupted Data
	Kernel Error: Send Too Much Scattered Data
	Kernel Error: Attempt to free more than alloc a buffer
	Ping and UDP work but TCP does not
	Ping works but UDP and TCP do not
	Driver Will Not Send and/or Receive Data
	Driver stops sending and/or receiving data
	Other problems

